Name:

Enrolment No:

UPESEnd Semester Examination, December 2024Course: Functional AnalysisProgram: Integrated B.Sc.-M.Sc. MathematicsSemester: VIITime : 03 hrs.Course Code: MATH4001Max. Marks: 100

Instructions: There are total eleven questions in two pages. Answer the questions in legible handwriting mentioning solutions to question number properly
SECTION A

(50x4M=20Marks)					
S. No.		Marks	СО		
Q 1	Choose the correct option. i. Dimension of \mathbb{C}^n as a linear space over <i>C</i> is: a) <i>n</i> b) <i>n</i> + 1 c) <i>n</i> ² d) 2 <i>n</i> ii. Consider $f: \mathbb{R} \to \mathbb{R}$. Which of the following is not a linear map? a) $f(x) = x$ b) $f((x) = x^2$ c) $f(x) = 3x + 1$ d) $f(x) = 0$ iii. Which of the following is not a property of norm in general? a) $ x \ge 0$ b) $ x + y \le x + y $ c) $ kx = k x $ d) $ x = 0$ iff $x = 0$ iv. A complete norm space is known as a: a) Hilbert space b) Compact space c) Banach space d) Euclidean space	1 x 4	CO1		
Q 2	Write the (i) Closed graph theorem, and (ii) Uniform boundedness principle	4	CO2		

Q 3	Let Y be any closed subspace of a Hilbert space H. Then show that $H = Y \bigoplus Y^{\perp}$	4	CO3	
0.4	Then show that $H = T \oplus T$.			
Q4	then $T^{-1} \in B[X, Y]$.	4	CO4	
Q 5	Show that the graph of a linear map P on a Banach space X is closed.	4	CO6	
SECTION B				
(4Qx10M= 40 Marks)				
There is an internal choice in Q9				
Q 6	State and prove the Open mapping theorem.	10	CO2	
Q 7	If <i>Y</i> is a closed subspace of a Hilbert space <i>H</i> , then $Y = Y^{\perp \perp}$.	10	CO4	
Q 8	Let $X = Y \bigoplus Z$ and P be the projection on Y along Z. Then $T \in BL(X)$	10	CO5	
	is decomposed by a pair (Y, Z) if and only if $PI = IP$.			
Q 9	For any bounded linear functional f on a normed space X , prove that			
	$ f = \sup\{ f(x) : x \le 1\} = \sup\{\frac{1}{ x }: f(x) = 1\}.$	10	CO6	
	OR	10		
	Prove that a linear functional f on a normed space is bounded functional			
	if and only if f is a continuous functional.			
SECTION-C				
(2Qx20M=40 Marks)				
There is an internal choice in Q11				
Q 10	"Let X be a normed space and let Y be a complete normed space. Then	20	CO4	
	L(X, Y) is a Banach space." Prove it.	20	001	
Q 11	State Hahn-Banach theorem. Prove that a linear functional on a normed			
	space is a bounded functional if and only if it is continuous functional.			
	OR	20	CO5	
	Show that for any x, y in an inner product space X ,	20		
	$\langle x, y \rangle = \frac{1}{4} (x + y ^{2} - x - y ^{2} + x + iy ^{2} - x - iy ^{2}).$			