Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Commutative Algebra Program: Integrated B.Sc. – M.Sc. in Mathematics Course Code: MATH3054P Semester: VII Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions from Sections A, B and C. Questions 9 and 11 have an internal choice.

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	Show that in an Artinian ring, all the prime ideals are maximal.	4	CO3		
Q 2	Prove that a local ring does not contain idempotent elements except 0 and 1.	4	C01		
Q 3	The integral closure of $K[t]$ is $K[t^2, t^3]$, for any field of fractions K – Prove or disprove.	4	CO2		
Q 4	For any primary decomposable ring A , show that radical of A is the smallest prime ideal containing A .	4	CO1		
Q 5	Show that for any set $C = \{x \in B \mid x \text{ is an integral in } B \text{ over } A\}$ is a subring of <i>B</i> containing <i>A</i> .	4	CO2		
	SECTION B				
(4Qx10M= 40 Marks)					
Q 6	Any two bases for a free module <i>M</i> over a commutative ring have the same cardinality.	10	CO2		
Q 7	 Let K be the field of fractions and B be a valuation ring of K, then show the following: (i) B is the local ring. (ii) For any ring B'such that B ⊆ B' ⊆ K, then show that B' is a valuation ring of K. 	7 + 3	CO3		
Q 8	Let A be a ring, A' be an A – algebra. Then A' is finitely generated as an A – algebra and is integral over A iff $A[x_1, x_2,, x_n]$ with all x_i 's are integral over A.	10	CO2		
Q 9	A ring R is a Dedekind ring iff R is a Noetherian integrally closed integral domain of dimension 1, so every non-zero prime ideal is maximal. Or State and Prove the Going–Up Theorem.	10	CO1		

SECTION-C (2Qx20M=40 Marks)				
Q 10	 Let A ⊆ B be rings. Then establish the following equivalent statements (a) x ∈ B is integral over A. (b) A[x] is a finitely generated A – module. (c) ∃ a finitely generated A – module C containing A and x. (d) ∃ a faithful A[x] – module M which is finitely generated. 	5+5+5+5	CO2	
Q 11	Let A be a Noetherian ring. Then show that the polynomial ring A[x] is also a Noetherian ring. Or State and Prove the Hilbert Nullstellensatz's theorem.	20	CO3	