Name:

Enrolment No:

UPES **End Semester Examination, December 2024 Course: Navigation, Guidance and Control Semester: VII Program: B.Tech Mechatronics** Time : 03 hrs. **Course Code: MECH4041** Max. Marks: 100 Instructions: Provide relevant diagrams if applicable. **SECTION A** (5Qx4M=20Marks) S. No. Marks CO Q 1 List the challenges in Mobile Robot localization 4 **CO1** Explain importance of Schuler principle in IMU Navigation Q 2 4 **CO2** Q 3 Why is the gimbal lock phenomenon important? 4 **CO2** Q4 List different types of missiles with examples. 4 **CO1** What are different categories of Homing guidance Schemes? Q 5 4 **CO1 SECTION B** (4Qx10M= 40 Marks) Differentiate between localization based navigation versus programmed Q 6 solutions based Navigation for Robots. 10 **CO1** Differentiate between GPS and GLONASS Satellite navigation Systems. Q 8 How many Satellites and Orbits are used in each of them. 10 **CO2** Derive Proportional Navigation Missile Guidance laws giving latex Q 9 acceleration along with neat sketch for each case. Or What is the significance of *Delta guidance* scheme for Boosted launch Vehicles. Derive the relevant guidance equation for Delta guidance 10 **CO3** scheme along with the help of neat sketch.

Q10	Find and compare the component of angular velocity along x-,y-,z- body- fixed axis as shown in below figure with 1) α =30 deg, 2) α =45 deg, and α =60 deg. Assume that the angular velocity Ω about the velocity vector in each case is 25 deg/s.	10	CO4
SECTION-C (20x20M-40 Marks)			
Q 11	 A) What do you mean by <i>Velocity-to-be-gained</i> (Vg) term in <i>Q-guidance</i> scheme. B) Derive following equation which provides a scheme for <i>Q guidance</i> algorithm V_g = QxV_g = -a_T	20	CO3
Q 12	What is the object of Delta Guidance. Derive the relations for Delta Guidance equations for required velocity components. If the Launch Vehicle normal burnout parameters are assumed to be $X_{b}=25,000 \text{ m}$ $V_{b}=40000 \text{ m}$ $t_{b}=60 \text{ sec}$ $X_{T}=25,000 \text{ m}$ $V_{T}=40000 \text{ m}$ $t_{T}=300 \text{ sec}$ $V_{Rx0}=1000 \text{ m/s}$ Estimate the Delta guidance equations for the required velocity in this particular case to engages target OR B) Consider the missile-target engagement geometry shown below. Find the following a) Closing velocity, b) \dot{R} , c) LOS rate, d) estimated time-to-go, e) turn rate and radius of turn of the missile if a latex (n_c) of 28 m/sec is applied by the missile in a direction normal to the missile velocity, f) a angle α so that the missile is on a collision course with the target. (Note: missile is on a collision course with the target if the LOS rate is zero)	20	CO4

