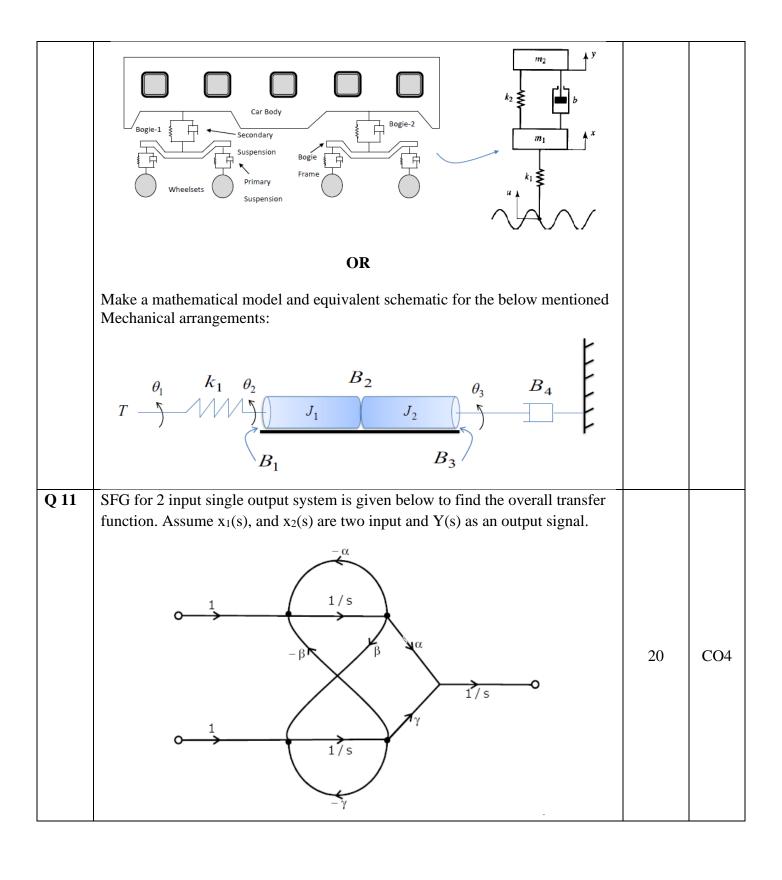
Name: Enrolm	ame: nrolment No: UPES UNIVERSITY OF TOMORROW			
Program: B.Tech. – Mechanical Engg Course Code: ECEG4036 Time Max. M		ter: VII : 03 hrs. Iarks: 100		
Instruc	ctions: All questions are to be answered			
	SECTION A (5Qx4M=20Mark	rs)		
S. No.	(5 (27-17) - 2017) 1111	,	Marks	СО
Q1	Justify the need and advantages of Calibration of any measuring device		4	CO1
Q 2	Enumerate the four types of Standards used in Measuring Instruments		4	CO1
Q 3	A piezoelectric crystal having dimensions of 5mm x 5mm x 1.5mm and a voltage sensitivity of 0.055 V-m/N is used for force measurement. Calculate the force if the voltage developed is 100V.		4	CO2
Q 4	A linear resistance potentiometer is 50 mm long and is uniformly wound with a wire of total resistance 5000 Ω . Under normal conditions, the slider is at the center of the potentiometer. Determine the linear displacement when the resistance of the potentiometer is 1850 Ω .		4	CO1
Q 5	Describe the working of the Ph meter.		4	CO2
	SECTION B		ı	I
	(4Qx10M=40 Mar	·ks)		
Q 6	Analyze and evaluate the advantages/disadvantages of Magnetic Flow meter and Ultrasonic Flow meter.		10	CO3
Q 7	Find the transfer function of the following System.			


M

C

CO5

10

Q 8	The ratio arms of the Wheatstone bridge shown in Fig. below are R1 = 1000 Ω , R2 = 100 Ω . The standard resistance R3 = 400 Ω . The unknown resistance RX = 41 Ω . A 1.5 V battery with negligible internal resistance is connected from the junction of R1 and R2 to the junction of R3 and RX. The galvanometer with an internal resistance of 50 Ω and a current sensitivity of 2 mm/ μ A is connected to the other corner of the bridge (Fig). Calculate the deflection of the galvanometer caused by the imbalance in the circuit.	10	CO3	
Q 9	Reduce the block diagram shown in Fig. 1 to a single block using the block diagram technique		CO4	
	SECTION-C (2Qx20M=40 Marks)			
Q 10	Develop a mathematical model for below below-mentioned Train suspension system.	20	CO5	

