Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Hydrology and Water Resources Engineering Program: B.Tech. Civil Engineering Course Code: CIVL4067 Semester: VII Time: 03 hrs. Max. Marks: 100

Instructions: <u>Assume suitable values for any missing.</u>

	SECTION A		
	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1.	Explain the concept of potential evapotranspiration and actual evapotranspiration.	04	CO3
Q 2.	State the various forms of precipitation with their salient points.	04	CO1
Q 3.	Ordinates of the 1-hr unit hydrograph of a basin at 1-hr intervals are 6, 9, 6, 4 and 2 m^3 /s. Determine the watershed area represented by this unit hydrograph.	04	CO2
Q 4.	State the various methods to reduce evaporation losses from a reservoir.	04	CO1
Q 5.	What do you understand by moving average method used for the presentation of rainfall data?	⁰⁴ CO1	
	SECTION B (4Qx10M= 40 Marks)		
Q 6.	 a. Explain the concept of consumptive use in the context of soil-water relationships and state its relevance. b. Calculate the delta for a crop when its duty is 5.25 km² per m³/s on the field, and the base period of this crop is 55 days. 	04+06	CO3
Q 7.	Explain Lacey's theory and discuss the three regime conditions for canal design according to Lacey's theory. OR Explain Kennedy's theory and discuss the regime conditions for canal design according to Kennedy's theory.	10	CO4
Q 8.	Examine the commonly used evaporimeters for the estimation of evaporation. Also, discuss how lake evaporation can be estimated from the use of evaporimeters.	10	CO1
Q 9.	Describe the classification of runoff based on the time delay between precipitation and the runoff. Also, explain the concept of natural flow in context of runoff.	10	CO2

							(2Q		CTIO /I=40		ks)							
Q 10.	 a. Explain t b. Rainfall durations of flow at the off from start of rainfall (h) Observed flow (m³/sec) a. Explain t b. Two stor and 2.0 cm rain. The or Time (h) UH coordinate (m³/sec) Estimate the constraint of the second start of the sec	of n a could outle	nagi et of 0 0 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	nituc hme <u>f the</u>) () () () () () () () () () (de 3 ent a e cat 6 13 ffec 6 h y, oc 6 -h y, oc 6 -h y, oc 6 -h y, oc 1 85 DRH	26 ting t dura cur s unit 12 12 125	curv n and f 27 l ent. E 18 21 21 the ru tion a succes hydr 15 160	e with 2.8 c km ² p stima 24 16 0 0 18 0 185	h its c cm oc producte the 30 12 12 hydro aving y. Th oh for 24 5 160	ograph rainf ograph rainf e 2 cr a cat 30 0 11	ng or ne fol fall ex 42 7 7 7 6. Fall ex m ER chme 36 0 60	two lowin <u>xcess</u> 48 5 5 xcess rain 42 42 36	value follo 25	drogr ϕ ind 60 4.5 4.5 es of ws th en be 54 16	raph ex. 6 3.0 e 3 low 60 8	n of 66 5 cm cm : 69 0	06+14	CO2
Q 11.	 a. Design an irrigation channel section for the discharge of 40 cumecs, silt factor as 0.2 and side slopes 0.8:1. b. Design a stable canal section to carry 75 cumecs discharge at a slope of 0.30 m/km, having been given that n = 0.031, and m = 1.20, where the symbols have their usual meaning. 												30	10+10	CO4			