Name: Enrolment No:			
0	UPES End Semester Examination, December 2024		
Program: B.Tech (Chemical Engineering)		Semester: VII Time : 03 hrs. Max. Marks: 100	
	SECTION A		
S. No.	(5Qx4M=20Marks)	Marks	СО
Q 1	Calculate and compare the atom efficiency of the following non-catalytic and catalytic reactions. Non-catalytic route: $3CH_3-CHOH-CH_3 + 2CrO_3 + 3H_2SO_4 \rightarrow 3CH_3-CO-CH_3 + Cr_2(SO_4)_3 + 6H_2O$		
	Catalytic route: CH ₃ -CHOH-CH ₃ \longrightarrow CH ₃ -CO-CH ₃ + H ₂ Molecular weights: CH ₃ -CO-CH ₃ = 58 g/mol; Cr ₂ (SO ₄) ₃ = 392 g/mol; H ₂ O = 18 g/mol H ₂ = 2 g/mol	4	CO1
Q 2	Write the mechanism of isomerization over a bifunctional catalyst.	4	CO2
Q 3	Give any two changes that occur during the calcination of the catalyst.	4	CO2
Q 4	List any one method each for the surface and bulk composition and surface and bulk structure of the catalyst.	4	CO3
Q 5	Give the name of a catalysts each for any two biofuels and biochemicals production.	4	CO4
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Discuss the mechanism of the catalytic cracking and the generation of active sites required for the same in zeolites.	10	CO2
Q 7	Describe the manufacturing and activation of hydrotreating catalyst. (Or) Explain the manufacture of alumina support and its impregnation with platinum for the catalytic reforming catalyst.	10	CO2
Q 8	Explain the method of temperature programmed desorption of ammonia for the determination of the acidity of the catalyst.	10	CO3
Q 9	Explain the mechanism of hydrothermal liquefaction to convert waste into bio-oil and catalyst development for the same.	10	CO4
	SECTION-C		

	(2Qx20M=40 Marks)		
Q 10	The following data was obtained when nitrogen adsorption was carried out for Fe-MCM-41 catalyst at liquid nitrogen temperature after degassing at 300°C and 200 mm Hg. Relative Absolute Organity Adsorbed (mmHg) Constrained (mmHg) (mmHg) 0051868914 35.530452 86.5385 0.0997138 61.254021 12.3880 0.102701253 70.370468 13.6862 0.119825441 82.104591 15.3367 0.137284441 94.068733 17.0064 0.184740772 106.03699 18.6649 0.184740772 106.03699 18.6649 0.207519800 142.198380 23.6333 0.22677259 115.43523 22.5304 0.244013843 167.207977 27.0630 0.261430736 179.145020 28.6995 0.26018980 192.50061 30.5280 0.29018980 192.50061 30.5280 0.280018965 266.574890 40.7162 0.433408626 297.065704 44.9507 0.477861070 327.470367 49.2040 0.55588284 449.281189 66.5299 0.655682387 388.447571 57.8438 0.61102253 418.739075 62.1904 0.65558824 449.281189 66.5299 0.699665118 479.697174 71.1211 0.732527217 502.016785 74.4935 0.785422655 53.41381 99.8144 0.988075273 677.328735 173.7279 0.880075754 615.62296 95.9978 0.787542055 524.1189 94.8144 0.988075273 677.328735 173.7279 0.880075754 615.62296 95.9978 0.789742102 56.415724 80.7752 0.78884 439.241189 66.0328 0.493424102 56.41384956 94.0710 0.98007573 677.328735 173.7279 0.880067754 615.62296 95.9978 0.78954255 74.143963 41.7251 0.78884 433.4184 Calculate Langmuir surface area of the catalyst. (Or)	20	CO3
11	 (a) Discuss the mechanism of hydrocracking, the active centers and their amount on the product distribution. (b) List out the various steps involved in the assembly of solid 	10	CO2
	catalyst and describe any two of them in detail.	10	