Name: Enrolm	nent No:			
	UPES E. I.S			
Course	End Semester Examination, De e: Finite Element Analysis	cember 2024 Semester: VII		
•				
Course Code: MECH4023		Max. Marks: 10	Max. Marks: 100	
B and C	ctions: All questions are compulsory. The question paper con C. Section A comprises 5 questions of 4 marks each, Section B of C comprises 2 questions of 20 marks each. SECTION A			
<u> </u>	(5Qx4M=20Marks)) 		
S. No.		Marks	CO	
	$\begin{array}{c} \eta \\ 4 \\ 1 \\ 1 \\ 5 \\ 2 \end{array}$	4	CO1	
Q 2	Discuss plain stress and plain strain condition?	4	CO2	
Q 3	Identify the shape functions of 3 nodded CST element	2 4	CO1	
Q 4	Discuss the purpose of Natural Coordinate System?	4	CO1	
Q 5	Explain the significance of Jacobian in terms of na coordinate system?	atural and global 4	CO1	
	SECTION B	、 、		
	(4Qx10M= 40 Marks	3)		

Т

Г

Q 6	For the three nodded triangular element shown in figure, calculate the temperature at point P, given the nodal temperature as $T_1 = 100^{\circ}C$, $T_2 = 200^{\circ}C$ and $T_3 = 300^{\circ}C$.	10	CO2
Q 7	Write down the stiffness and mass matrices of the structure shown below: 2 2 4 4 4 4 4 4 4 4	10	CO2
Q 8	Identify the strain displacement matrix for CST Element?	10	CO2
Q 9	Identify shape function for four nodded quadrilateral elements? Discuss the transformation of global coordinate system into natural coordinate system?	10	CO2
	SECTION-C		
0.10	(2Qx20M=40 Marks)		
Q 10	Determine the consistent load vector for the CST element under the action of the loading shown in figure. $ \begin{array}{c} $	20	CO3
	consider a rectangular paner as shown in Figure. The paner is modeled using a plane stress linear elastic material with the following properties: Young's modulus $E = 3 \times 10^{11}$ Pa and Poisson's ratio $v = 0.3$. The essential boundary conditions are $u_{Ax} = u_{Ay} = u_{By} = 0$. The natural boundary conditions are as follows. Along each edge of the panel, the		

	prescribed traction consists of normal and lateral components, both equal to 10^3 N/m. Discretize the panel using a single rectangular element as shown below. For convenience, use identical global and local numberings as shown in Figure. Calculate nodal displacements and stresses at the element Gauss points.		
Q 11	Consider the beam shown in Figure, Given $E = 210$ GPa, $I = 60 \times 10^{-6}$ m ⁴ , P = 20 kN, and L = 2m, determine: 1. the global stiffness matrix for the structure. 2. the vertical displacement at node 2. 3. the rotations at nodes 2 and 3. 4. the reactions at nodes 1 and 3. 5. the forces (shears and moments) in each element. w 1 2 3 3 4 4 3 4 4 2 3 4 3 4 3 3 4 4 3 3 4 4 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 4 4 3 3 3 4 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3	20	CO3