Name:

Enrolment No:

UPES

End Semester Examination, Dec, 2024

Course: Computational Fluid Dynamics Program: B.Tech ASE Course Code: ASEG 4005

	SECTION A		
S. No.		Marks	CO
Q1.	Identify four different key applications of CFD in aerospace engineering.	4	CO1
Q2.	Evaluate the impact of discretization on the accuracy of CFD simulations.	4	CO2
Q3.	Emphasize the need of numerical stability in CFD.	4	CO3
Q4.	Describe the concept of artificial viscosity in CFD, discussing its application in CFD simulations.	4	CO4
Q5.	Compare cell-centered and cell-vertex formulations.	4	CO5
	SECTION B		
Q6.	Discuss the steps involved in CFD analysis, emphasizing each step's significance in obtaining accurate results.	10	CO1
Q7	Perform mathematical manipulations to prove that all four forms of continuity equation i.e conservational integral form, non-conservational integral form, conservational differential form, and non-conservational differential form are euivalent to each other.	10	CO2
Q8	Explain the process of transforming governing PDEs from the physical domain to the computational domain, and evaluate its significance in modeling complex flow domains.	10	CO3
Q9	Formulate an implicit scheme for solving the one-dimensional heat conduction equation: $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ OR Compare explicit and implicit finite difference methods, analysing their stability, convergence, and computational efficiency.	10	CO4

Semester: VII Time 03 hrs. Max. Marks: 100

	SECTION-C					
Q 10	Consider a rod of length 1 m, initially at 25°C with both boundary temperatures held at 100°C, using the one-dimensional unsteady heat conduction equation: $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ Discretize the computational domain with $\Delta x = 0.2$ m and $\Delta t = 0.01$ s, and consider α = 0.01 m ² /s. Use FTCS scheme to discretize the governing equation. Calculate the temperature distribution over the rod for the first five time steps.	20	CO5			
Q 11	Formulate the MacCormack technique to solve the fluid flow equations, provide practical examples of its application, and discuss its advantages and limitations. OR Formulate the relaxation techniques and illustrate the utilization of successive over and under relaxation for achieving faster convergence.	20	CO4			