Name:

**Enrolment No:** 



## UPES End Semester Examination, Dec. 2024

Course: Geomechanics Programme: B.Tech. (APE-UP) Course Code: PEAU4025 Instructions: All questions are compulsory Semester: VII Time: 3 hrs. Max. Marks: 100

| SECTION A        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|--|--|--|
| (5Qx4M=20Marks)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |  |  |  |  |
| S. No.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks | СО  |  |  |  |  |
| Q 1              | Explain the application of drill stem test (DST) in petroleum operation                                                                                                                                                                                                                                                                                                                                                                                        | 4     | CO1 |  |  |  |  |
| Q 2              | Describe the importance of failure criterion in well bore stability analysis.                                                                                                                                                                                                                                                                                                                                                                                  | 4     | CO2 |  |  |  |  |
| Q 3              | Describe in detail about E. M. Anderson's theory of faulting with suitable sketch.                                                                                                                                                                                                                                                                                                                                                                             | 4     | CO2 |  |  |  |  |
| Q 4              | Describe the correlation between well bore fracture and collapse pressure with suitable formulations.                                                                                                                                                                                                                                                                                                                                                          | 4     | CO2 |  |  |  |  |
| Q 5              | Define the following:<br>(a) Geomechanical Earth Model (GEM)<br>(b) Stress and Strain<br>(c) 2-D Mohr's Circle<br>(d) Model calibration                                                                                                                                                                                                                                                                                                                        | 4     | C01 |  |  |  |  |
| SECTION B        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |  |  |  |  |
| (4Qx10M=40Marks) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |  |  |  |  |
| Q 6              | <ul> <li>Execute the following with suitable formulation:</li> <li>(a) Correlation between linear stress components in cartesian and in-situ coordinate system.</li> <li>(b) Correlation between linear stress components in cartesian and cylindrical coordinate system.</li> <li>OR</li> <li>Write detailed notes on the following with suitable examples?</li> <li>(a) 3-D Geomechanical Earth Model</li> <li>(b) 4-D Geomechanical Earth Model.</li> </ul> | 10    | CO3 |  |  |  |  |
| Q 7              | Illustrate any two-pore pressure prediction method with associated formulations.                                                                                                                                                                                                                                                                                                                                                                               | 10    | CO2 |  |  |  |  |
| Q 8              | Describe the conditions for tensile failure during hydraulic fracturing.                                                                                                                                                                                                                                                                                                                                                                                       | 10    | CO3 |  |  |  |  |
| Q 9              | For the structural member, Determine:<br>(a) The principal stresses and the maximum in-plane shear stress acting                                                                                                                                                                                                                                                                                                                                               | 10    | CO4 |  |  |  |  |

|                               | at the point              |                                               |                               |    |      |  |  |  |  |
|-------------------------------|---------------------------|-----------------------------------------------|-------------------------------|----|------|--|--|--|--|
|                               | (b) Show th               |                                               |                               |    |      |  |  |  |  |
|                               | (-) ==== u                |                                               |                               |    |      |  |  |  |  |
|                               |                           |                                               | IPa                           |    |      |  |  |  |  |
|                               |                           |                                               | 70 MPa                        |    |      |  |  |  |  |
| SECTION-C<br>(20x20M=40Marks) |                           |                                               |                               |    |      |  |  |  |  |
| 0.10                          | (a) Derive                | the formula using Mohr's Coulo                | mb criteria to determine the  |    |      |  |  |  |  |
| × 10                          | following:                | to roman asing mom 5 cours                    |                               |    |      |  |  |  |  |
|                               | (i) She                   | ar stress                                     |                               |    |      |  |  |  |  |
|                               | (ii) Nor                  | mal Stress                                    |                               |    |      |  |  |  |  |
|                               | (iii) Rela                | ation between triaxial stress                 |                               |    |      |  |  |  |  |
|                               | (iv) Con                  | npressive Stress and Tensile Stre             | ess                           |    |      |  |  |  |  |
|                               | (b) The foll              | owing data is given for a vertica             | l well drilled.               |    |      |  |  |  |  |
|                               | $\sigma v = 10 MI$        |                                               |                               |    |      |  |  |  |  |
|                               | $\sigma H = \sigma h = f$ | 9 MPa                                         |                               |    |      |  |  |  |  |
|                               | P0 = 5 MPa                | 1                                             |                               |    |      |  |  |  |  |
|                               | $\mu = 0.3$               |                                               |                               |    |      |  |  |  |  |
|                               | Determine                 | the following                                 |                               |    |      |  |  |  |  |
|                               | (a) Fracture              | e pressure for non-deviated well              |                               |    |      |  |  |  |  |
|                               | (b) Fracture              | 20                                            | CO3                           |    |      |  |  |  |  |
|                               |                           |                                               |                               | 20 | 0.05 |  |  |  |  |
|                               |                           | OR                                            |                               |    |      |  |  |  |  |
|                               | The stress                | in a granitic rock mass has beer              | n measured by the hydraulic   |    |      |  |  |  |  |
|                               | fracturing t              | echnique. Two tests were condu                | ucted in a vertical borehole: |    |      |  |  |  |  |
|                               | one test at               | a depth of 500 m, and the othe                | r test at a depth of 1000 m.  |    |      |  |  |  |  |
|                               | The results               | were as follows:                              |                               |    |      |  |  |  |  |
|                               | Depth                     | Breakdown pressure, $P_B$                     | Shut-in pressure, $P_S$       |    |      |  |  |  |  |
|                               | (m)                       | (MPa)                                         | (MPa)                         |    |      |  |  |  |  |
|                               | 500                       | 14.00                                         | 8.00                          |    |      |  |  |  |  |
|                               |                           |                                               |                               |    |      |  |  |  |  |
|                               | Given that                | the tensile strength, $\sigma_t$ , of the roc | K IS 10 MPa,                  |    |      |  |  |  |  |
|                               | (a) Estimate              |                                               |                               |    |      |  |  |  |  |
|                               | all the                   |                                               |                               |    |      |  |  |  |  |
|                               | (b) State wi              |                                               |                               |    |      |  |  |  |  |
|                               | (0) state WI              |                                               |                               |    |      |  |  |  |  |

|      | Justify your                                                | reasons for the statement.                                                                                                  |                                                                                                                 |    |     |
|------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----|-----|
| Q 11 | A cylindrica<br>for unconfin<br>below. Dra<br>strength, Ela | l core of diameter 54 mm and<br>ed compressive strength test.<br>w stress strain graph and<br>stic modulus and Poisson's ra | height of 150 mm was taken<br>The test results are tabulated<br>determine the compressive<br>tio of the sample. |    |     |
|      | Load(kN)                                                    | Axial Displacement(mm)                                                                                                      | Lateral displacement(mm)                                                                                        | 20 | CO4 |
|      | 227.1                                                       | 0.26                                                                                                                        | 0.014                                                                                                           | 20 | 004 |
|      | 293.5                                                       | 0.3                                                                                                                         | 0.053                                                                                                           |    |     |
|      | 376.7                                                       | 0.34                                                                                                                        | 0.014                                                                                                           |    |     |
|      | 391.4                                                       | 0.35                                                                                                                        | 0.029                                                                                                           |    |     |
|      | 415.5                                                       | 0.38                                                                                                                        | 0.048                                                                                                           |    |     |
|      | 414                                                         | 0.42                                                                                                                        | 0.054                                                                                                           |    |     |