Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Fundamentals of Group theory Program: B.Sc. (H) Chemistry by Research Course Code: CHEM4012 Semester: VII Time : 03 hrs. Max. Marks: 100

Instructions:

- 1. Write your enrolment number on the top left of the question paper.
- 2. Do not write anything else on the question paper except your enrolment number.
- 3. Attempt all parts of a question at one place only.
- 4. Internal choice is given for question number 9 of Section B and question number 11 of Section C only.
- 5. Use Character Table wherever required.

SECTION A

	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Discuss postulates of the Great orthogonality theorem.	4	CO1
Q 2	Determine r_{3N} for the following molecules: (a) $H_2O(C_{2v})$ (b) POCl ₃ (C_{3v})	4	CO2
Q 3	Assign the point group of the following compounds: (a) BrF ₅ (b) SO ₂	4	CO2
Q 4	Elaborate different types of symmetry elements present in XeF ₄ .	4	CO3
Q 5	Explain the following with examples: (i) Plane of symmetry (ii) Centre of symmetry	4	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Mention the irreducible components of the following reducible representations (use the character tables): (a) D_{3d} (b) C_{4v}	10	CO3
Q 7	Deduce the matrix representation for the identity rotational operation and reflectional operation, rotational–reflectional operation and inversion.	10	CO3
Q 8	Elaborate all the forbidden transition in D_{4h} and C_{4v} .	10	CO4

Q 9	Construct the character table for C_{3v} point group.				
	OR	10	CO3		
	How are the irreducible representation symbolized? Write the reduction				
	formula. Also, explain two examples for irreducible representation?				
	SECTION-C				
	(2Qx20M=40 Marks)				
Q 10	(a) Explain IR and Raman active mode in CH _{4.}				
	(b) Consider an octahedral molecule XY ₆ whose point group is O _h .	10+10	CO4		
	Prove the irreducible representation of O_h is $\Gamma = A_{1g} + E_g + T_{1u}$.				
Q 11	(a) Explain elements of symmetry and symmetry operations.	20			
	(b) Find the irreducible components of the representations generated				
	by a set of five d-orbitals in environments of T_d .		001		
	OR		CO3		
	Construct SALCs corresponding to bond stretches, and in- and out-of-				
	plane bending modes for $NH_3(C_{3v})$.				