Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Nano Electronics and Robotics Program: B. Tech (AMNT) Course Code: ECEG4049

Semester:VII Time : 03 hrs. Max. Marks: 100

Instructions:

- **1.** Read the instructions carefully.
- **2.** You may assume any missing but relevant information and data.

SECTION A

(5Qx4M=20Marks)	

S. No.		Marks	СО
Q 1	State the importance of a robot's workspace in industrial applications.	4	CO1
Q 2	What are the key differences between a BJT (Bipolar Junction Transistor) and a MOSFET?	4	CO2
Q 3	Discuss the relationship between Roll, Pitch, and Yaw and the overall functionality of a robotic system.	4	CO2
Q 4	Define forward kinematics in the context of robotics.	4	CO1
Q 5	Calculate the location of the end effector (x, y) for the 2 degree of freedom robot having 2 revolute joints as shown in the figure. Consider the arm length l_1 and l_2 while joint angles θ_1 and θ_2 .	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Compare the non-permanent magnet DC motor and permanent magnet DC motor.	10	CO3
Q 7	Suggest a robot from its kinematic viewpoint to place electronic components on a fixed printed circuit board.	10	CO3
Q 8	Explain how a MOSFET operates as a switch in digital circuits.	10	CO3

Q 9	A MOSFET is used in a circuit to drive an LED. If the gate voltage is reduced below the threshold voltage, predict the LED's behavior and explain why. OR Analyze the effect of increasing the gate-to-source voltage (V_{GS}) on the drain current (I_D) in an enhancement-mode MOSFET.	10	CO3
	SECTION-C		-
	(2Qx20M=40 Marks)		
Q 10	 Explain the working and usage of different types of robotic grippers. Suggest appropriate grippers to handle objects of non-uniform shape. OR A stepper motor has a step angle of 1.8°. It is connected to a controller that sends 4000 pulses per second. If the motor operates for 10 seconds, calculate: The total number of steps taken by the motor. The angular displacement of the motor shaft in degrees. III. The rotational speed of the motor in revolutions per minute (RPM). 	20	CO4
Q 11	Analyze the factors influencing the speed of motion and load-carrying capacity of a robot, explaining their effects on overall performance.	20	CO4