Name:

Enrolment No:

Program Course Course Instruct	End Semester Examination, December 2024n Name:B. Tech ADEName:Noise Vibration and HarshnessCode:MECH4039tions: Attempt all the questions. Assume any missing data if required.	ester : VII e : 3 hrs a. Marks : 100			
SECTION A					
S. No.	(5Qx4IVI=20IVIAFKS)	Marks	CO		
Q 1	Tabulate the key differences between plane waves and spherical waves.	4	C01		
Q 2	Enlist the techniques to reduce interior noise in automobiles	4	C01		
Q 3	Discuss the source of Low frequency vibrations in automobile.	4	C01		
Q 4	Define brake squeal noise and pass-by noise in concern to automobil engineering.	e 4	CO1		
Q 5	Brief explain the applications of the Wave Equation in Acoustics.	4	CO1		
SECTION B (4Qx10M= 40 Marks)					
Q 6	Establish the relationship between sound power level and sound intensity leve and between sound intensity level and sound pressure level.	^{l,} 10	CO2		
Q 7	In a spring-mass-dashpot system k = 40 kN/m, m = 120 kg, and the damping provided is only 20% of the critical value. Determine (i) the damping ratio (ii) the critical damping coefficient (iii) the natural frequency of damped vibration (iv) the logarithmic decrement				
Q 8	Write your viewpoint on the effect and acceptable degree of harshness. Als discuss the psychological effects of noise & vibrations on human beings.	⁰ 10	CO2		
Q 9	Explain in brief the octave band analysis. An octave band analysis was done o an automobile. It was found that the octave band sound pressure levels were 9 dB at 250 Hz, 94 dB at 1000 Hz, 96 dB at 2000 Hz, 94 dB at 8000 Hz. Determin the total mean square pressure.	n 3 ie 10	CO2		

	Explain various sound measurement techniques in brief. Also, discuss the noise control techniques, and noise absorbing materials and structures.			
	control commutes, and noise according materials and subcares.			
SECTION-C				
(2Qx20M=40 Marks)				
Q 10	Explain the characteristics and source of vibration for the following power train			
	components.	20	CO3	
	a) Engine (b) Clutch (c)Transmission (d) Propeller shaft			
Q 11	An engine of an automobile weighing 200 kg is mounted on spring having			
	stiffness k=10790 N/cm. A piston within the engine weighing 2.2 Kg has a			
	reciprocating motion with a stroke of 7.5 cm and a speed of 6000 rpm. Assuming			
	the motion to be simple harmonic, determine;			
	(a) The amplitude of vibration of the machine and			
	(b) The transmissibility and force transmitted to the ground.			
	Take the damping ratio as 0.2.			
	OR	20	CO3	
	A four-wheeler vehicle is a complex with many degrees of freedom. As a first			
	approximation let it be assumed that the vehicle is constrained to move in vertical			
	direction and that tires do not provide any spring effect. A vehicle of this type			
	weighs 9.8 kN when fully loaded and 2.45 when empty. The effective spring			
	constant is 3.5 kN/cm, and the damping factor is 0.5 when vehicle is fully loaded.			
	The speed of vehicle is 96 km/hr and the road surface may be assumed sinusoidal			
	with a period of 4.88 minutes and an amplitude X_1 cm, determine the amplitude			
	ratio of vehicle when fully loaded and empty.			