Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Propulsion-II Program: B. Tech ASE Course Code: ASEG3004

Semester : V Time : 03 hrs. Max. Marks: 100

Instructions: Make use of sketches/plots to elaborate your answer. Brief and to-the-point, answers are expected. Assume suitable data if needed. Gas Table allowed, Refer attached formula sheet.

SECTION A (50x4M=20Marks)

	(SQX4M=20Marks)		
S. No.		Marks	CO
Q 1	List the key components of an turbofan and turboprop engine with neat sketch.	4	CO4
2	Describe the differences in working principles between an ramjet and scramjet engine.	4	CO2
3	Apply the concept of A/A* ratios to analyze supersonic nozzle performance and show the plot between area ratio to Mach number with suitable example.	4	CO3
4	Describe how normal shocks affect total pressure in supersonic inlets and suggest the right method to anchor the shock.	4	CO1
5	Evaluate the impact of thermal choking on the overall efficiency of a thermodynamic cycle.	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6	 Air is discharged from a reservoir at a pressure of 1.2 MPa and temperature of 450 K through a nozzle to an exit pressure of 0.08 MPa. If the flow rate through the nozzle is 3000 kg/h, and assuming isentropic flow, determine a) The throat area, pressure, and velocity. b) The exit area and Mach number. 	10	CO3
7	Air enters a convergent -divergent nozzle with stagnation conditions of 400 kPa and 400 K. the area ratio of the nozzle is 4. After passing through the nozzle , the flow enters a duct where heat is added. At the end of duct there is normal shock wave. The stagnation temperature upstream of a shock wave is 500 K. assuming isentropic flow in the nozzle and Rayleigh flow in the duct. Calculate the heat added and the stagnation pressure loss.	10	CO2
8	A 3.5 m long well insulated duct of diameter 50 mm and average friction coefficient 0.005 is connected to a frictionless bell mouth entrance. Air at 110 kPa and 300 K is drawn through the entrance and flows into the duct. Find the maximum mass flow rate , the flow parameters at exit and the range of back pressure that will produce the flow.	10	CO3

	OR		
	 Differentiate between turbojet, turbofan and turboprop engines based on the following parameters. 1. Thrust generation 2. Efficiency 3. Size of the powerplant 4. Application 5. Schematic diagram 		
9	An aerial vehicle is equipped with a pulsejet engine at an altitude of 1000 ft having diffuser area The vehicle is cruising at a speed of 850 m/s. consider the naphthalene as an fuel and heating value is equal to 49000 kJ/ kg Compute (a) Mass flow rate per unit area (b) thrust power. (c) TSFC SECTION-C	10	C04
	(2Qx20M=40 Marks)		
Q 10	A supersonic wind tunnel is designed for $M=3.0$. if the air in the reservoir is at a pressure of 1.4 bar and at a temperature of 27 0 C, determine the mass flow rate , area of test section and the pressure , temperature and density of air at the nozzle throat and test section. Nozzle throat area is 0.1 m^2 . OR Design an advanced turbofan engine for passenger aircraft operating at an altitude of 35000 ft at 0.6 Mach number with the following data.		
	Bypass ratio = 0.6 Overall pressure ratio= 23 Fan pressure ratio = 3.5 Fuel heating value = 46000 kJ/kg Turbine inlet temperature = 1800 K Diffuser pressure recovery factor = 0.89 Axial compressor efficiency = 0.9 Axial fan efficiency = 0.98 Burner pressure recovery factor = 0.96 Turbine efficiency = 0.93 Nozzle efficiency = 1	20	CO4
	Calculate the thrust per unit mass flow rate and the TSFC.		

2. The thrust force

• full-to-air ratio
$$(f) = \frac{m_{1}^{2}}{m_{a}}$$

• Thomentum = malify Ue Tprenue = $(fe-fa)Ae$
T = malify Ue-U or T = malue-U
 \therefore Thrust = malify Ue-U or T = malue-U
 \therefore Thrust = malify Ue-U or T = malue-U
 \therefore Thrust = malify Ue-U + mic(Ue-U) + Aeh (Peh-Pa) + Aec(Iec-Pa) - turbofon L
propendies of the two states (ue-U) = $\frac{1}{m_{1}(1+f)Ue-U} + Ae(Peh-Pa) + Ae(Peh-Pa)}$
• πp
 $(prepulsive ff) = \frac{u}{uT + 0.5mie(Ue-U)} = \frac{u \{malif + 1Ue-U\} + Ae(Peh-Pa)\}}{u \{malif + flue-U\} + Ae(Peh-Pa)\}} + (0.5mia(1+f)(Ue-U))}$
• $\pi p = \frac{2uT}{malif + flue-U} \Rightarrow Turbofon L prefon$
• $\pi p = \frac{2(T T_{-Tc})}{u(Th - Tc}) + ub + uc}$
 $(old thrust (Th) = minif(1+flue-U] + Aec(Pec-Pa)}{u(Th - Tc}) + ub + uc}$
• $\pi p = \frac{Tu}{u(Th - Tc}) + ub + uc}$
• $\pi p = \frac{2uT}{mh(fl+flue-U)} \Rightarrow tric(Uec-U)^{2} + mic(Uec-U)^{2}}$
• $\pi p = \frac{2uT}{mh(fl+flue)} + \frac{1}{mic}(ue-U)^{2}}$
• $\pi p = \frac{2uT}{mh(fl+flue)} + \frac{1}{mic}(ue-U)^{2}}$
• $\pi p = \frac{2uT}{mh(fl+flue)} + \frac{1}{mic}(ue-U)^{2}} \Rightarrow Romjct L Turbayed$
• $fleh = Tu + \frac{1}{2mh(1+fl)} \frac{(ue+U)^{2}}{mip qa}} \Rightarrow Turbefon 4 free form
• $mf(qa)$
• $mecholical condition, $\pi h = \frac{(p+flue-U)^{2}}{mip qa}$
• πe^{qa}
• $mcholical condition, $\pi h = \frac{(p+flue-U)^{2}}{mip qa}$
• πe^{qa}
• $mcholical condition, $\pi h = \frac{(p+flue-U)^{2}}{mip qa}$
• πfqa
• $mcholical formult e(Tsp) = Tmax$
• $TsFC = mipult/T = \frac{flue}{(Tmin)}$
• $fleh = \frac{flue}{\pi (Qa - Cph Tos}}$
• $fleh = \frac{flue}{\pi (Qa - Cph Tos}}$
• $fleh = \frac{flue}{\pi (Qa - Cph Tos}$
• $fleh = \frac{flue}{\pi (Qa - Cph Tos}}$
• $fleh = \frac{flue}{\pi (Qa - Cph Tos}$
• $fleh = \frac{flue}{\pi (Qa - Cph Tos}}$$$$$