Name:

Enrolment No:

: 3 hrs

UPES End Semester Examination, December 2024

	End Schlester Examination, December 2024		
Program Name:	B. Tech ADE	Semester	: V
Course Name:	Vehicle dynamics	Time	: 3 hr:
Course Code:	MEAD 3021	Max. Marks	: 100

Nos. of page(s):

3

Instructions: Attempt all the questions. Assume any missing data if required.

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Justify the statement, "Though not many systems belong to single degree of freedom system, the analysis of 1 DOF system helps us in understanding quite a few facets of the vibratory motion".	4	CO1	
Q 2	Discuss the source of vibration in Automobiles.	4	CO1	
Q 3	Enlist the various information printed on the side wall of a tire.	4	CO1	
Q 4	Discuss the significance of various forces and moments acts on an automobile.	4	CO1	
Q 5	Discuss the composition of tire material.	4	CO1	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Discuss the dynamics of steering for low speed and high-speed cornering.	10	CO2	
Q 7	A car with mass = 2000 kg, wheelbase = 2.8 m has 55% of weight distribution on front tires. Lateral stiffness of front and rear tires is $C_f = 40 \ kN/rad$ and $C_r = 35 \ kN/rad$. Calculate the understeer coefficient and critical speed or characteristic speed as applicable.	10	CO2	
Q 8	Derive the expression of natural frequency for the system shown in. Assume the bar CD to be weightless and rigid.	10	CO2	

