Name:

Enrolment No:

UPES End Semester Examination, December 2024

Programme Name : B. Tech MechatronicsCourse Name: Process ControlCourse Code: MECH3040PNos. of page(s): 03

Semester : V Time : 03 hrs Max. Marks: 100

Instructions: Assume suitable values of variables/parameters, if not given in the problem.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	(a) Define the term transfer function and its importance in process control.(b) Discuss the effect of poles and zeros on the final response of a system.	4	CO1	
Q 2	Comment on direct acting and reverse acting controllers.	4	CO1	
Q 3	Explain the concepts of marginal and asymptotic stability in a dynamic system. Comment on the system's response when its poles are located on the imaginary axis.	4	CO1	
Q 4	Describe the key characteristics of the response of a second-order system for overdamped, underdamped, and critically damped conditions.	4	CO2	
Q 5	Discuss the limitations of Laplace domain analysis.	4	CO2	
SECTION B (4Qx10M= 40 Marks)				
Q 6	 (a) Analyze the Routh-Hurwitz criterion and evaluate its role in determining the stability of a linear system. (b) Describe the key components of a Bode plot and assess how they are used to analyze the frequency response of a system. (c) Interpret the Nyquist stability criterion and apply it to analyze the stability of control systems. 	10	CO3	
Q 7	Elucidate on the properties and limitations of P, PI and PID controllers in the context of a close loop feedback control system.	10	CO2	

Q 8	Define root locus diagram.		
	Explain the root locus diagram of the characteristic equation:		
	$(s+1)(s+2)(s+3)+6K_c=0$, where K_c controller's gain, shown below.		
	$K_{3} = 60$	10	CO3
Q 9	A second-order process is described by the differential equation: $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt^2} + 9y(t) = 9u(t)$		
	$dt^2 = dt$		
	(a) Write the transfer function $G(s)$ relating the output $y(t)$ to the input $u(t)$.		
	(b) For a step input of magnitude 2, determine the steady-state response of the system		
	OR		
	In a chemical process, the concentration of a reactant follows first-order dynamics, governed by the equation:	10	CO2
	$rac{dC_A(t)}{dt}+rac{1}{ au}C_A(t)=rac{1}{ au}C_{Ain}$		
	(a) Derive the time response $C_A(t)$ for a step change in the inlet concentration C_{Ain} .		
	(b) Explain how changing the time constant τ affects the speed of response in the system.		

