Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Applied Machine Learning Program: B. Tech Mechanical & Mechatronics Course Code: MECH3059 Semester: V Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory. The question paper consists of 11 questions divided into 3 sections A, B and C. Section A comprises 5 questions of 4 marks each, Section B comprises 4 questions of 10 marks each and Section C comprises 2 questions of 20 marks each.

SECTION A (50x4M-20Marks)						
S. No.		Marks	СО			
Q 1	Compare ReLU and sigmoid activation functions. 4					
Q 2	A layer 'L' in a neural network has 5 neurons and the previous layer has 4 neurons. How many model parameters are associated with layer L?					
Q 3	Describe the matrix notation for getting activation from layer l (that is L) 4 (
Q 4	Explain vectorization in implementing machine learning algorithms and 4 C its advantage? Give an example					
Q 5	Linear regression is not a good algorithm for classification. Discuss with an example	4	C01			
SECTION B (4Qx10M= 40 Marks)						
Q 6	Given two features, x1 (Range 1-5) and x2 (Range 10000-14000), what step will you take before applying gradient descent to ensure fast convergence.	10	CO2			
Q 7	For given confusion matrix calculate (A)Precision (b)Recall (C)f1-score [[45,1], [11,33]],	10	CO2			
Q 8	Describe the algorithmic steps of the K-Means Cluster method	10	CO1			
Q 9	What is Information Gain and how is it used for deciding the feature for splitting in Decision tree?	10	CO2			
SECTION-C						
(2QX2UM=40 Marks)						
Q IU	data has x_1, x_2 and y. Manually do only 1 iteration of Gradient Descent for Linear regression on this data. In calculations, take initial guess as	20	CO3			

	-				
	$w_1 = 2, w_2 = 1, b$	= 1. Use learning rate α	= 0.1. After doing 1 iteration		
	of Gradient Descer	nt, also determine the eq	puation for regression and the		
	prediction for the f	$x_2 = 3$			
	All calculations mu				
	<i>x</i> ₁ <i>x</i> ₂ y				
	2 3 15				
	3 2 12				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Implement K-Mea				
	Individual	Variable 1	Variable 2		
	1	1	1		
	2	1.5	2		
	3	3	4		
	4	5	7		
	5	3.5	5		
	6	4.5	5		
	7	3.5	4.5		
0 11	Consider a hypothe	tical Neural Network w	ith just two neurons with		
	ReLU activation in				
		Relle derivation in layer 1 and Emear derivation in layer 2.			
	₹ +1				
	\rightarrow \bigcirc a^{1}	$\overrightarrow{a^{(2)}}$			
	The cost function is				
	1			20	CO3
	$J = \frac{1}{2} (a^{[2]} - y)^2$				
	Assuming $w^{[1]} =$	Assuming $w^{[1]} = 3 h^{[1]} = 2 w^{[2]} = 2 h^{[2]} = 4$ and a single data			
	point of $x = 3 \& y =$	point of $x = 3 & y = 4$ show the forward propagation as well as back			
	propagation steps t				
	value of undated m				
	iteration assuming				
		iourning fute u = 0.1			