Name: Enrolment No:

UPES								
End Semester Examination, December 2024								
Course: Design of Machine Elements Semester								
Program: B.Tech Mechanical, ADE and Mechatronics Time			: 03 hrs.					
Course Code: MECH3024 Max. Ma			arks: 100					
Instruc	tions: 1. All the questions are compulsory.							
	2. Use of Design Data Handbook is allowed.							
	SECTION A (5Qx4M=20Marks)							
S. No.		Marks	CO					
Q 1	Identify the process involved for the approximate estimation of endurance limit.	4	CO2					
Q 2	Define and classify the fluctuating load.	4	CO2					
Q 3	Explain the procedure to minimize the stress concentration in stepped shaft.	4	CO1					
Q 4	Develop R5 and R10 series.	4	CO1					
Q 5	Designate the steel							
	i. Carbon = 0.12–0.20%, silicon = 0.15–0.35%, manganese = 0.60–1.00%, nickel							
	= 0.60 - 1.00%, chromium $= 0.40 - 0.80%$.	4	CO1					
	ii. Carbon = 0.15–0.25%, silicon = 0.10–0.50%, manganese = 0.30–0.50%, nickel							
	= 1.5 - 2.5%, chromium $= 16 - 20%$							
	SECTION B (4Qx10M= 40 Marks)	•						
Q 6	The section of a steel shaft is shown in Fig. The shaft is machined by a turning							
	process. The section at XX is subjected to a constant bending moment of 500 kN-							
	m. The shaft material has ultimate tensile strength of 500 MN/m ² , yield point of							
	350 MN/m ² and endurance limit in bending for a 7.5 mm diameter specimen of	10	CO2					
	210 MN/m ² . The notch sensitivity factor can be taken as 0.8. The theoretical stress	10						
	concentration factor may be interpolated from the following tabulated values.							
	where r_f is the fillet radius and d is the shaft diameter. The reliability is 90%.							
	Determine the life of the shaft.							

	$\left(\frac{r_f}{d}\right)$ K_t	0.025 2.6	0.05 2.05 	0.1 1.66				
Table : Valu	ues of coef	ficients a a	- <i>x</i> and b in su	rface fin	ish factor			
Surface	finish	а	Ь					
Ground		1.58	-0.085	;				
Machined or c	Machined or cold-drawn		-0.265	;				
Hot-rolled	Hot-rolled		-0.718	:				
As forged	As forged							
	Table : Values of size factor							
D	Diameter (d)		K _b					
d	≤ 7.5		1.00					
7.	$7.5 < d \le 50$		0.85					
d>	d > 50		0.75					
	Ta	ble: Reliabi	ility factor					
	Reliability							
	50		1.000					
	90		0.89	0.897				
	95		0.868					
	99		0.81	4				
	99.9		0.75	3				
	99.99		0.65	9				
07 A plate 10 mm this!	subjected	to a tancil	load of 20		own in Ei-	The		
nlate is made of cast i	A plate, 10 mm mick, subjected to a tensile load of 20 km is snown in Fig. The plate is made of cast iron (Sut = 350 N/mm^2) and the factor of safety is 2.5						10	CO2
Determine the fillet ra	adius.	550 I V IIII	<i>i_)</i> und the		Survey 15 2.		Ĩ	

Q 8	It is required to design a cottor joint to connect two rods of 25 mm dia subjected under 10 kN load.	10	CO3
Q 9	A cast iron bracket fixed to the steel structure is shown in Fig. It supports a load P of 25 kN. There are two bolts at A and two bolts at B. The distances are as follows, $l_1 = 50 \text{ mm}$ $l_2 = 200 \text{ mm} 1 = 400 \text{ mm}$. Determine the size of the bolts, if maximum permissible tensile stress in the bolt is 50 N/mm ² .	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q 10	It is required to design a pair of spur gears. The pinion shaft is connected to a 10 kW, 1440 rpm motor. The starting torque of the motor is 150% of the rated torque. The speed reduction is 4 : 1. Design the gears, specify their dimensions and suggest suitable surface hardness for the gears.	20	CO4
Q 11	A transmission shaft, supporting two pulleys A and B and mounted between two bearings C1 and C2 is shown in Fig. Power is transmitted from the pulley A to B. The shaft is made of plain carbon steel 45C8 (Sut = 600 and Syt = 380 N/mm2). The pulleys are keyed to the shaft. Determine the shaft diameter using the ASME code.	20	CO4

