Name:

Course:

Enrolment No:

UPES End Semester Examination, Dec 2024

Instrumental Methods in Chemical Analysis

Program: BSC (H) Chemistry Course Code: CHEM3038P Semester: V Time: 03 hrs. Max. Marks: 100

Instructions: Read all the questions carefully. There is a choice in section B and C for question 9 and 11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Pick the more intense light spot of same power with justified reason.			
	i) ii)	4	CO1	
Q 2	Calculate the time of scan for FTIR for scanning between the frequency range 1200-2800 cm ⁻¹ .	4	CO1	
Q 3	Find the correct element with spin quantum no $\frac{1}{2}$ and 1 with justified reason.			
	i) ${}^{2}_{1}H$ ii) ${}^{19}_{9}F$	4	CO1	
Q 4	A compound has a strong infrared 1690 cm ⁻¹ , which of the following structure is likely to be one of the compounds with justified reason. i) $C_6H_5-O-CH = CH_2$ $C_6H_5-C-CH_3$	4	CO3	
Q 5	Figure out indicated proton signal type in the given molecule with justified reason: i) CH ₃ CH ₂ *Cl ii) CH ₃ CH ₂ *CH ₂ Cl	4	CO3	
SECTION B				
(4Qx10M= 40 Marks)				
V 0	diagram and mention the effect of column length on resolution.	10	CO2	

Q 7	Demonstrate the X-ray generating process and the relation of its energy	10	CO1	
	to the binding energy of an element.			
Q 8	Give an overview about competitive immunoassay and illustrate the	10	CON	
	relation between pathogen concentration and signal intensity.		02	
Q 9	Mention the superiority of matrix assisted laser desorption ionization			
	method over electron impact ionization.	10	000	
	Or	10	CO2	
	Classify voltametric technique based on the characteristic of potential			
	scan with graphical representation.			
SECTION-C				
(2Qx20M=40 Marks)				
Q 10	i) Illustrate the various parts of the mass spectroscopy device and the			
-	operation of its different parts.	10 . 10	COA	
	ii) Explain the mass/charge ratio effect on the ion separation in mass	10 + 10	002	
	spectroscopy.			
Q 11	i) Show the effect of external magnetic field on the potential energy of			
	the nucleus.			
	ii) Elucidate the coupling constant and the effect of surrounding			
	environment on it.	10 10	GOA	
	Or	10 + 10	003	
	i) Co-relate the vibrational frequency of a bond with the structure of the			
	molecules.			
	ii) Indicate the essential UV-vis emission spectroscopy parameter that			
	aids in molecule identification.			