Name:					
Enrolment No:					
UPES End Semester Examination, December 2024 Programme Name: B. Tech (Electronics & Communication Engineering) / Electronics & Computer Engineering)					
Course Course Nos. of	: 03 Hrs Marks : 100 mester : V				
Instructions: Assume any data in programming, if required.					
SECTION A ($4 \times 5 = 20$ Marks) Attempt <i>all</i> the questions					
S. No.		Marks	СО		
Q.1	Discuss the ASIC Design Flow in detail and detail the different abstraction levels in ICs with example.	5	CO1		
Q.2	Realize the output of the logic diagram shown in Fig. 1 $ \begin{array}{c} $	5	CO3		
Q.3	What are the different styles of modeling followed in VHDL based design. Design a full adder using data flow and behavioral model	5	CO4		
Q.4	Draw the logic diagram and functional table to support common cathode display of the 7-segment display (0 to 9) and develop the code in VHDL programing language to support the same functionality. $\downarrow \downarrow $	5	CO5		

SECTION B (4 x 10 = 40 Marks)				
Attempt <i>all</i> the questions				
Q.5	(a) Explain the concept of propagation delay and Noise Margin with examples in MOSFET circuits. (b) Realize the following functions using NMOS and CMOS. $Y = \overline{A.(B + CD)}$ $Y = \overline{X + Y + \overline{Z}}$	10	CO2	
Q.6	What is the significance of stick diagram and layout diagram for understanding MOSFET design? Draw the stick diagram and layout design of 2 input NAND and XOR gate based on CMOS logic. <i>OR</i> Detail the fabrication process of npn-BJT transistor.	10	CO3	
Q.7	Detail the functionality of enhancement type NMOS/PMOS under different regions. Explain the drain voltage characteristics and transfer characteristics in detail	10	CO1	
Q.8	Draw the voltage transfer curve for the NMOS/CMOS inverter and derive the mathematical expression to estimate the value of V_{OH} , V_{OL} , V_{IL} and V_{IH} for NMOS/CMOS inverter circuit and detail the functionality.	10	CO2	
	SECTION-C (2 x 20 = 40 Marks)			
Attempt any two the followings				
Q.9	 (a) Draw the cross-sectional view of CMOS. Detail all the steps and fabrication process of CMOS using P-Well Process. (b) Draw the FPGA design flow used for synthesis the logic. Draw the architecture of any one of the FPGA and explain the functionality: XC 3000, SPARTAN 6, Virtex 7. 	10+10	CO3	
Q.10	(a) Consider a process technology for which $L_{min} = 0.4 \ \mu\text{m}$, tox = 8 nm, $\mu_n = 450 \ \text{cm}^2/\text{V-s}$ and $V_t = 0.7 \text{V}$ (i) Find C_{ox} and K' _n (ii) For a MOSFET with W/ L = 8 $\mu\text{m}/0.8 \ \mu\text{m}$, Calculate the value of V _{GS} and V _{DSmin} needed to operate the transistor in the saturation region with a dc current I _D =100 μ A. (iii) For the same device, find the value of V _{GS} required to cause the device to operate as a 1000 Ω resistor for very small V _{DS} .	10+10 10+10	CO4	
0.11	(a) Design the chip using VHDL/ Verilog HDL that supports the following behaviour.	10+10		
	(b) Draw the structure of CPLD (Max Altera 7000) and explain the functionality.	10+10	CO5	
	Compare the CPLD with FPGA.			