Name:

Enrolment No:

a	End Semester Examination, December 2024	a , , ,		
Course	: Machine Learning	Semester: V		
Progra	m: B. Tech. (Electronics & Computer Engineering)	Time: 03 hrs.		
Course	Code: CSAI3013	Max. Marks: 100		
Instruc	tions: Attempt all the questions			
	SECTION A			
	(5Qx4M=20Marks)			
S. No.		Marks	CO	
01	(a) What's the penalty term for the Ridge regression?			
× ·	(i) The sum of the square of the magnitude of the coefficients			
	(ii) The sum of the square root of the magnitude of the coefficients			
	(iii) The absolute sum of the coefficients			
	(iv) The sum of the coefficients			
	(b) Bagging is an ensemble technique that:			
	(i) Combines predictions using a weighted average			
	(i) Trains multiple models on different subsets of the data			
	(iii) Constructs an ensemble by iteratively undating weights			
	(iv) Uses a committee of experts to make predictions			
	(iv) Uses a committee of experts to make predictions	1	CO1	
	(c) which ensemble learning algorithm assigns weights to base models		COI	
	(i) A deProof			
	(i) Audoost (ii) Bandom Forest			
	(iii) Kalidolli Folest			
	(iii) Gradient Boosting			
	(IV) None of These			
	(i) Improved model performance			
	(i) Improved model performance			
	(ii) Reduce overlitting and underlitting			
	(11) Optimize resource utilization			
0.0	(iv) All of these			
Q 2	What is the significance of underfitting and overfitting in machine		COA	
	learning algorithms and now it can be resolved in solving complex	4	002	
0.0	problems.			
Q3	(a) Aggiomerative clustering algorithm is an example of which type of			
	clustering method?			
	(1) Hierarchical (11) Partitioning (11) Density-based (11)	4	CO3	
	None of these			
	(b) When the hierarchical clustering algorithm uses the maximum			
	distance to measure the distance between clusters then it is called as			

	(i) Single linkage algorithm (ii) Complete linkage algorithm		
	(iii) Double linkage algorithm (iv) None of these		
	(c) Which clustering technique identify arbitrary shaped clusters.		
	(i) Hierarchical (ii) k-means (iii) Density-based (iv) None		
	of these		
	(d) DBSCAN algorithm stands		
	for		
Q 4	(a) The cell body of neuron can be analogous to what mathematical operation?		
	(i) Summing (ii) Differentiator (iii) Integrator (iv) None of these (b) What is generalization?		
	(i) the ability of a pattern recognition system to approximate the desired		
	output values for pattern vectors which are not in the test set.		
	(ii) the ability of a pattern recognition system to approximate the desired	_	
	output values for pattern vectors which are not in the training set.	4	CO4
	(iii) Both (i) and (ii)		
	(iv) None of the these		
	(c) Neural network is also referred to as:		
	(i) Neurocomputer (ii) Connectionist network (iii) Parallel distributed		
	processor (iv) All of these		
	(d) Which activation function in neural network is differential?		
	(i) Threshold (ii) ReLU (ii) Sigmoid (iv) All of these		
Q 5	Explain McCulloch-Pitts Model of a Neuron.	4	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		ſ
Q 6	Differentiate the following: (Any Two)		
	(a) Gradient Boost and XGBoost	10	CO1
	(b) Decision Tree and Random Forest	10	001
	(c) kNN regressor and Support vector regressor		
Q 7	(a) What is logistic regression? How is this algorithm different from conventional regression algorithms. Explain this algorithm with a		
	suitable example.	10	CON
	(b) Explain how gradient descent algorithm is used to solve regression	10	CO2
	problems.		
0.8	What do you understand by principal component analysis (PCA)?		
Q U	Explain the steps involves in PCA with a suitable example.	10	CO3
Q 9	What is the significance of weights, bias and activation function in neural		
	network? Explain the following activation function with neat diagrams.		
	(i) Threshold function		
	(ii) Sigmoid function	10	CO4
	(iii) ReLU function		
	(iv) Softmax function		
	OR		

Q 10	 Differentiate the (i) Learning rate (ii) Plasticity and (iii) Multi-layer (iv) Error Correct (a) Explain the algorithms. (b) Design a deconstruction list weather New Delhi to the formation of the form	e follo and d d Ger neura ction perfo cision , tem pased	owing: Epochs heralizat Il netwo learning rmance tree for perature on whice	tion rk and Rad g and Com (2Qx2 parameter the data sl e, humidity ch kids dec	lial basis petitive ECTIO 20M=40 rs of regr hown in y and w cide whe	s functi learnir N-C Mark ression the tab ind of ther to	ion ne ng (s) (a and c (ble belo (diffe: go or	ural network classification ow. The data rent days of not goes out		
	to play.	Day 1 1 2 3 4 5 6 7 8 9 10	Weather Sunny Cloudy Sunny Cloudy Rainy Rainy Sunny Cloudy Rainy	Temperature Hot Hot Mild Mild Cool Mild Hot Hot Hot Hot Hot Mild	Humidity High Normal High High Normal High Normal	Wind Weak Weak Strong Strong Strong Weak Strong Strong	Play? No Yes Yes No Yes No Yes No		20	CO2
Q 11	(a) Describe the of weight cl propagation a(b) What is perceptron? I AND and OR	struc hange lgorit ceptro Expla gate	eture of e in a thm. on? Whi in how	an artificia multi-laye ich type o perceptro O	al neuro er neura f proble n can b DR	n. Der 1 netv ms ca e utili	ive the work n be s zed to	e expression using back- solved using o implement	20	CO4

 (a) What are the significant parameters which affect the operation of artificial neural network. Differentiate Hebbian learning and memory-based learning with suitable diagrams. (b) What is unconstrained optimization technique in neural network? Differentiate how weights of neural network are optimized using Newton's method and Gauss newton method.
