Name:

Enrolment No:

UPES **End Semester Examination, December 2024 Course: Antenna and Wave Propagation** Semester: V **Program: B. Tech Electronics and Communication Engineering** Time: 03 hrs. **Course Code: ECEG-3041** Max. Marks: 100 Instructions: answer all the questions **SECTION A** (5Qx4M=20Marks) S. No. Marks CO Q. 1 Define the following terms associated with the antenna. (a) Radiation pattern. (b) Field pattern. 4 **CO1** (c) Directivity (d) Polarisation. Q. 2 What are the various ionospheric layers and provide a definition of the 4 **CO2** maximum usable frequency for ionospheric propagation. Q. 3 Calculate the directivity of a horn antenna having the following specifications: Operating frequency = 3 GHz. Aperture efficiency = 60%4 CO₂ Dimension of the horn = $2 \text{ cm} \times 1.5 \text{ cm}$ **O**. 4 Show that the gain of a half-wave dipole is 2.15 dB more than that of an 4 CO₂ isotropic antenna. Mention the salient features of reflector antenna in terms of its significance Q. 5 in very high-frequency applications. **CO3** 4 **SECTION B** (4Qx10M= 40 Marks) (a) An antenna element is formed by placing a folded dipole in between 2 Q. 6 parasitic elements. One of the elements is larger and the second one is smaller than the folded dipole. How does this combined structure help 6+4 CO₂ in having radiation in one direction and null in another?

	(b) Estimate the length of a Yagi Uda antenna, consisting of 7 elements,		
	and operating at 300 MHz with the following specifications:		
	First Director length = 0.45λ		
	Reflector length = 0.55λ		
	Interelement separator = 0.2λ .		
	Separation between driver and reflector = $\lambda/4$.		
Q. 7	(a) Briefly discuss the phenomenon of forward scattering propagation.		
	(b) Determine the three-field region of antenna of maximum diameter 2 m	5+5	CO3
	operating at 100 MHz.		
Q. 8	(a) Derive a relationship between the gain and effective aperture of an		
	(h) A nonsheloid entenne is fed with a primery dinele entenne at 10 CUz of		
	(b) A paraboloid antenna is led with a primary dipole antenna at 10 GHz of fraguency. The diameter of the pereboloid entenne is 5). Colculate the		
	following quantities	10	CON
	(i) Gain	10	02
	(i) Effective aperture		
	(ii) ENBWA		
Q. 9	(a) Discuss space wave propagation.		
	(b) A radio broadcasting link has to be established between New York and		
	Los Angeles with the help of propagation of radio waves through an		
	ionosphere of height 200 km with a critical frequency of 5 MHz. The	5+5	CO2
	distance between the two aforesaid cities are 5000 km. Determine the		
	maximum usable frequency for this specific transmission path.		
	SECTION-C (2Qx20M=40 Marks)		
Q. 10	(a) A rectangular patch is designed with the following specification		
	Height = 1.5 mm		
	Substrate's dielectric constant $= 4.4$		
	Operating frequency = 10 GHz .		
	Calculate the dimensions (L and W) and characteristic impedance of this		
	antenna		
	(b) Explain the mechanism by which a microstrip antenna radiates		
	electromagnetic waves into space using the transmission line model.	10+10	CO4
1			

Q. 11	(a) When a r	adio wave propagates in free space, it encounters transmission		
	losses. 1	Deduce the Friss transmission equation formula for the		
	estimatio	n of transmission losses.		
	(b) A parabo			
	The distance between the two stations is 100 km and the operating			CO3
	frequency of FM radio is 100 MHz. The power transmitter antenna is			
	60000 W, and the gains of the transmitting and receiving antennas are			
	10 dB and 20 dB respectively. Then determine the following attributes.			
	(i)	Free space loss.		
	(ii)	Effective aperture of the transmitting antenna		
	(iii)	EIRP of the transmitting antenna.		
	(iv)	Power received at the receiving antenna.		