Name:

Enrolment No:

		UNIVERSITY OF TOMORROW		
		UPES		
End Semester Examination, December 2024Course:Hydraulic EngineeringSemesterProgram:B.Tech in Civil EngineeringTimeCourse Code:CIVL 3060Max. MInstructions:Draw neat sketches using pencil wherever required to support your answer		: 03 hrs farks: 100)	
Insti uv	SE	CTION A M=20Marks)		
S. No.	List of questions	,	Marks	СО
Q 1	of flow (in m/s) in the channel, is 2. The flow of water (mass density = = 10 ⁻⁶ m ² /s) in a commercial pipe, ha mm, yields an average shear stress at	ing $g = 9.81 \text{ m/s}^2$, the critical velocity	2 + 2	CO2
Q 2	Differentiate between the following : a) Uniform and non-uniform flow b) Sub-critical and super-critical flow		2 + 2	CO1
Q 3	Recall the utility of gradually varied flow channel.	w and rapidly varied flow in an open	4	CO1
Q 4	Estimate the specific energy of flowing w width 5 m when the discharge is 10 m ³ /s		4	CO2
Q 5	Explain the concept of hydraulic jump us	ing a neat sketch.	4	CO2
		CTION B M= 40 Marks)	1	1
Q 6	Derive all the necessary conditions for the in open channel flow.	e most economical trapezoidal section	10	CO3
Q 7	Three pipes of lengths 800 m, 500 m and 7 mm, and 300 mm respectively are connereplaced by a single pipe of length 17 equivalent pipe.	ected in series. These pipes are to be	10	CO3

Q 8	Draw the boundary layers in laminar, transition, and turbulent flow through a neat sketch, showcasing your understanding on the laminar boundary layer, turbulent boundary layer, laminar sub-layer and boundary layer thickness.		CO2
Q 9	Using Manning's method, estimate the bed slope of trapezoidal channel of bed width 4 m, depth of water 3 m, and side slope of 2 horizontal to 3 vertical, when the discharge through the channel is 20 m ³ /s. Take Manning's N as 0.03.		
	OR	10	CO3
	Determine the thickness of the boundary layer at the trailing edge of smooth plate of length 4 m and of width 1.5 m, when the plate is moving with a velocity of 4 m/s in stationary air. Take kinematic viscosity of air as $1.5 \times 10^{-5} \text{ m}^2/\text{s}$.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) The efficiency η of a fan depends on density ρ, dynamic viscosity μ of the fluid, angular velocity ω, diameter D of the rotor and the discharge Q. Analyze and express η in terms of dimensionless parameters. 		
	(b) The depth of flow of water, at a certain section of a rectangular channel 2 m wide, is 0.3 m. The discharge through the channel is 1.5 m ³ /s. Determine whether a hydraulic jump will occur, and if so, estimate its height and loss of energy per kg of water.		CO3
Q 11	Design the discharge in each pipe of the network shown below using Hardy Cross method. The pipe network consists of 5 pipes. The head loss h_f in a pipe is given by $h_f = rQ^2$. The values of r for various pipes and the inflow or outflows at nodes are shown in the figure.		
	$D = \frac{r}{c} + $		
	r =4	20	CO4
	90 A r=2 B 30		
	OR		
	The difference in water surface levels in two tanks, which are connected by three pipes in series of lengths 300 m, 170 m, and 210 m and of diameters 300 mm, 200 mm, and 400 mm respectively, is 12 m. Design the rate of flow of		

water, if coefficients of friction are 0.005, 0.0052, and 0.0048 respectively,	
considering (i) minor losses also, and (ii) neglecting minor losses.	