Name:								
Enrolment No:								
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES							
D		End Sem Ex		n, Decemb		4	X 7	
Programme Name:B. Tech in Chemical EngineeringSemeCourse Name: Chemical Reaction Engineering ITime							V 3 hr	
Course		ction Engineer	ing i			Inic . Iax. Marks :	-	
Nos. of					1		100	
-	ions: The exam will be <u>Ol</u>	PEN BOOKS,	NOTES,	and RESO	OURCE exams. The st	tudents are a	llowed	
	ooks, photocopies, handw							
ALLOV		,						
Please n	nake the necessary assumpt	ions and mentic	on them w	henever an	d wherever required. I	Please read ev	verv	
	very carefully before attem				1		2	
	SECTION A [30]							
S. No.						Marks	СО	
Q1.	You are the team lead,	and your team	n from Ra	anbaxy is	working on developi	ng		
	different drugs. You have divided your team into three groups, each working on							
	different stoichiometric co				•			
	and B. One of the groups							
	equation $-\mathbf{r} = \mathbf{k}\mathbf{C}_{\mathbf{A}}\mathbf{C}_{\mathbf{B}}^{2}$. He			l of the res	sults received and deci	de		
	to check them. The batch	data received is			_			
	_	time (min)	Xa	Xb	4			
		0*T	0	0	-			
		0.91*T	0.23	0.08	-			
	_	1.82*T	0.42	0.15	-			
		2.73*T	0.54	0.21	-			
		3.64*T	0.62	0.25	-			
	_	4.55*T	0.75	0.29	4			
	_	5.45*T	0.82	0.33	4			
	_	6.36*T	0.85	0.36	-			
	_	7.27*T	0.88	0.39	-			
	_	8.18*T	0.92	0.42	-			
	_	9.09*T	0.95	0.45				
	L	10*T	0.97	0.49				
	Here, $\mathbf{T} = \mathbf{LAST} \mathbf{TWO} \mathbf{D}$							
	If the initial concentration	s of the APIs A	and B are	e				
	C _{Ao} = LAST ONE DIGIT OF ROLL NUMBER (kmol/m ³)							
	$C_{Bo} = LAST ONE DIGIT$	Г OF SAP ID (kmol/m ³)					

	a) Prove the authenticity of the rate law shared by your team member. Also, comment on the kinetic data received. Take all necessary assumptions and mention the same.					CO2
	b) What mistakes do you by kinetic data analysis?	5	CO1			
	c) What conclusions do you	15	CO1			
		SE	CTION B [35	[] []		-
Q2.	design configuration to Ther hard to identify the best com	mo Fisher fo pination of re ombinations.	r fabrication. actors to maxi Which one w	details on the reactor and its Your team has been working imize productivity. Your team vill you choose? Give proper 1 kmol/min each.		
	a) 1 CSTRs of 1000 m^3				10	CO4
	b) 3 CSTRs of 300 m ³ each				10	CO4
	c) CSTR 1 of 200 m ³ + CSTR 2 of 300 m ³ + CSTR 3 of $500m^3$					CO4
	d) Analyze the possible pros and cons of your choice.					CO1
		SE	CTION C [35	5]		
Q3.		version. You	have instructed	Fisher. However, your reactor ed your team to perform tracer		
		0	0			
		5	0.07			
		10	0.15			
		15	0.23			
		20	0.32			
		25	0.42			
		30	0.52			
		35	0.62			
		40	0.7	4		
		45	0.77	-		
		50	0.84	-		
		55	0.9	4		
		60 65	0.95	4		
		65 70	0.98			
		/0	1	J		
	Now, you are to analyze the c	lata.				

a	 Calculate the necessary details. Analyze the data to identify the problems that may exist in the process. Discuss if the behavior of the reactor is what you have expected. List all the possible assumptions that you may have made. 	20	CO2
b) Calculate the real conversion that you may expect from the fabricated reactor. You may choose your model with proper justification. Explain in detail the outcome of your calculation.	15	CO4

The MS-Excel sheet must be uploaded on the LMS portal marked END SEMSTER EXAMINATION, with the following file name Roll number_End sem.