Name: Enrolment No:		UNIVERSITY OF TOMORROW			
UPES End Semester Examination, December 2024 Course: Electromagnetic waves and antennas Program: B Tech ASE Course Code: ECEG3014P Max. Marks: 1 Instructions: (a)Read all questions carefully before answering.			Semester: V Time: 03 hrs. .00		
(b)Write your answers clearly and precisely. SECTION A					
(5Qx4M=20Marks)					
S. No.			Marks	CO	
Q 1	Determine the loss tangent for each of the following nonmagnetic media at 10 MHz (<i>i</i>) $\varepsilon = 5\varepsilon_0$, $\sigma = 10^{-2}S/m$ (<i>ii</i>) $\varepsilon = 80\varepsilon_0$, $\sigma = 3S/m$.		4	CO2	
Q 2	A standard air-filled rectangular waveguide with dimension $a=8.636$ cm, b=4.318cm is fed by a 4GHz carrier from a co axial cable. Determine whether a TE ₁₀ mode will be propagated. If so, calculate the group velocity and phase velocity.		4	CO2	
Q 3	Find the electric flux density and volume charge density if electric field $E = x^3 a_x + 4y^4 a_y + 3z^2 a_z V/m$ in medium whose $\varepsilon_r = 2$.		4	CO3	
Q 4	Define antenna and describe the radiation mechanism of two wire antenna with suitable examples.		4	CO1	
Q 5	Discuss the key insights provided by eac and differential forms, and what are thei	ch Maxwell equations in integral r physical interpretations?	4	C01	
SECTION B					
(4Qx10M= 40 Marks)					
Q 6	Derive and explain the equation of conti	nuity for time varying fields.	10	CO4	
Q 7	The plane wave in $E = 10 Cos(wt - z)$ lossless medium ($\varepsilon = 16\varepsilon_0, \ \mu = \ \mu_0$)	$a_x V/m$ in air normally hits a at z=0. Find Reflection and	10	CO3	

	transmission coefficient. Also, Calculate the reflected electric and				
	magnetic fields.				
Q 8	Describe the following: isotropic radiator, radiation pattern, Gain,	10	CO2		
	Directivity and antenna efficiency.	10			
Q 9	The refractive index of the ionosphere layer is 0.7 and MUF is 6MHz. if		CO3		
	the height of the ionosphere layer is 300km above the earth's surface then	10			
	find out the maximum electron density, critical frequency, and distance	10			
	between transmitter and receiver for flat earth.				
SECTION-C					
(2Qx20M=40 Marks)					
Q 10	(a) Derive the field expression for rectangular waveguide for transverse		CO4		
	electric mode. Also derive the expression for the cut off frequency	15±5			
	and cut off wavelength.	13+5			
	(b) Explain construction and working of strip line.				
Q 11	(a) Explain the working principle of parabolic reflector antenna with				
	suitable diagram.	10+10	CO2		
	(b) Calculate the FNBW and HPBW of parabolic reflector antenna which	10+10	002		
	is operating at 10GHz and the diameter of its circular aperture is 5λ .				