Name:

Enrolment No:

UPES							
End Semester Examination, December 2024Course: Aircraft Structure ISProgram: B Tech AerospaceTCourse Code: ASEG 3018N			Semester: Vth Time : 03 hrs. Max. Marks: 100				
Instructions: Assume suitable right-handed coordinate system. Assume any suitable value for missing data							
	SECTION A (50x4M=20Marks)						
S. No.		Marks	CO				
Q 1	 a) In a Uniaxial state of stress, the normal to the plane across which the normal stress is maximum, makes an angle with the direction of loading, which is equal to b) Principal planes are the planes on which maximum stress is the c) The radius of Mohr's circle gives the values of d) An iron block of 5cm² cross section carries an axial compressive load of 50 kN. The magnitude of the normal stress on a plane, who's normal is inclined at 30° to the axis of the block is 	4	CO1				
Q 2	If ρ is the density and A is the area of cross-section of rod of length L, then determine the strain energy of bar of rod due to the self-weight.	4	CO1				
Q 3	The rod has a circular cross section with a moment of inertia I . If a vertical force P is applied at A , determine the vertical displacement at this point. Only consider the strain energy due to bending. The modulus of elasticity is E .	4	CO1				
Q 4	The structural steel column has a length of 12 ft. If its bottom end is fixed supported while its top end is free, determine the largest axial load it can support. Use a factor of safety with respect to buckling of 1.75.	4	CO2				
Q 5	A material is subjected to plane stress. Express the maximum-shear- stress theory of failure in terms of σ_x , σ_y and τ_{xy} . Assume that the principal stresses are of different algebraic signs.	4	CO3				

SECTION B						
(4Qx10M= 40 Marks)						
Q 6	The steel column can be considered pinned at its top and bottom and braced against its weak axis at the mid-height. Determine the maximum allowable force P that the column can support without buckling. Apply a factor of safety F.S.=2 against buckling. Take $A = 7.4(10^{-3}) m^2$, $I_x = 87.3(10^{-6}) m^4$, $I_Y = 18.8(10^{-6}) m^4$.					
		10	CO2			
Q 7	Determine the bending strain energy in the steel beam, where flexural rigidity <i>EI</i> is constant. 9 kN/m 6 m	10	CO1			
Q 8	An element in plane stress on the fuselage of an airplane (figure part a) is subjected to compressive stresses with a magnitude of 42 MPa in the horizontal direction and tensile stresses with a magnitude of 9.5 MPa in the vertical direction (see figure part b). Also, shear stresses with a magnitude of 15.5 MPa act in the directions shown, Determine the stresses acting on an element oriented at a clockwise angle of 40° from the horizontal. Also determine the plane of zero shear stress. Show these stresses on a sketch of an element oriented at this angle.	10	CO4			

	a) b)			
	9.5 MPa 42 MPa 15.5 MPa			
	Or The components of plane stress at a critical point on a	an aluminum shell		
	are shown.			
	120 MPa			
	← → 220 MPa			
	a) Determine the maximum shear stress, its asso	ciated stress and		
	planes.	has accumed based		
	on the maximum distortion-energy theory.	has occurred based		
Q 9	The solid shaft has a torque of 3.25 kip-in. The shaft in and is made of steel having a yield stress of $\sigma_{\rm vir}$ =	has a radius of 0.5		
	if the loadings cause the shaft to fail according to a) Maximum-shear-	10	CO3
	stress theory, and b) Maximum-distortion-energy the	ory.		
	SECTION-C			
	(2Qx20M=40 Mar	ks)		
Q 10	Determine the fixing moments and the reaction force	at the supports and		
	beam ACDB as shown below. Take EI is constant.	agram for the fixed		
	180 kN 160 kN-m			
			20	CO1
	[™] 3m ¹ 3m ¹ 4m	N		
	Or	C and D a fixed		
	support at A and overhang at DE. The span length is	AB = BC = CD =		

