Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course:	Advanced Reservoir Engineering	Semester: V
Program:	B. Tech. APE UP	Time : 03 hrs.
Course Code:	PEAU 3044	Max. Marks: 100
Nos. of page(s)	: 3	

Instructions:

- (a) All Questions are Compulsory in Sections A, B and C.
- (b) Choices are given in Section B (Question 9) and Section C (Question 11).
- (c) Answers must carry supporting material such as equations and diagrams.

SECTION A (5Qx4M=20Marks) Answer all questions

	Answer an questions					
S. No.		Marks	СО			
Q 1	List out the assumptions for rate equation. Illustrate the reservoir pressure monitoring.	4	CO1			
Q 2	Illustrate the formula to calculate initial oil and gas in place by volumetric method.	4	CO1			
Q 3	Define principle and advantages of continuity Equation.	4	CO2			
Q 4	State Compressibility. Illustrate the types of compressibility.	4	CO2			
Q 5	List out the advantage of pressure maintenance. Explain the factors important in WI pressure maintenance.	4	CO3			
	SECTION B					
	(4Qx10M= 40 Marks)					
Q 6	 (a) List out the types of gas oil ratios with suitable equations. (b) Calculate the porosity at 6500 psi. for the given following data: 		CO2			
	$cf = 10 \times 10-6$	10 (5+5)				
	original pressure = 7500 psi	(- • •)				
	current pressure = 6500 psi.					

Q 7	Illustrate the water influx rate with basic equations and calculate the		
	water influx rate e _w in a reservoir whose pressure is stabilized at 3000 psi.		
	Other related data is given as below:		
	0		
	Initial reservoir pressure = 3500 psi	10	CO3
	$dN_p/dt = 32,000 \text{ STB/day } B_0 = 1.4 \text{ bbl/STB}$	10	005
	$GOR = 900 \text{ scf/STB}, R_s = 700 \text{ scf/STB}$		
	$B_{g} = 0.00082 \text{ bbl/scf}, dW_{p}/dt = 0$		
	$B_w = 1.0 \text{ bbl/STB}$		
Q 8	Describe producing a mechanism of combination drive mechanism.		
	Write down the factors that influence oil recovery by water drive	10	CO3
	mechanism in detail.		
Q 9	Compare simulation and simulator. Explain the uses and uses of reservoir		
	simulation. Illustrate the two names of commercial software for static and		
	dynamic modeling & simulation in oil & gas field.	10	CO4
	Discuss different types of models based on geometry and dimensions with suitable figures in reservoir simulation		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	(a) Discuss different rules of well spacing. Describe Direct Line Drive,		
	Staggered Line Drive, 5-spot pattern & inverted 5-spot pattern with		
	suitable Figures.	20	~~~
		(10+10)	CO3
	(b) Define Initial development plan. Write down the different steps of the		
	initial development plan.		
Q 11	(a) Discuss elements of performance prediction.		
	(b) Calculate the water breakthrough using the Sobocinski-Cornelius		
	method for vertical well producing at 250 STB/day.		
	The related well and reservoir data are given below:		
	Oil rate $\Omega = 250 \text{ STB}/\text{day}$	20	CO4
	On rate, $Q_0 = 250$ STD/day Oil column thickness $h = 50$ ft	(5+15)	
	Different containing the matrix $h = 30$ ft Derforested interval $h = 15$ ft		
	Water density $a_{\rm p} = 63.76 \text{lb/ft}^3$		
	vi atel density, $p_W = 05.70 \text{ ID/H}$ Oil density, $p_{W} = 47.5 \text{ Ib/ft}^3$		
	On density, $\rho_0 = 47.5$ id/it		
	Oil formation volume factor $\mathbf{P}_{1} = 1.1 \text{ hb}/\text{STD}$		
	Un formation volume factor, $B_0 = 1.1 \text{ obl/STB}$		
	vertical permeability, $K_v = 9 \text{ mD}$		

Horizontal permeability, $k_h = 93 \text{ mD}$	
Porosity, $= 13\%$ and $M = 3$	
OR	
(a) Discuss analogy method to estimate oil and gas reserves.	
(b) Given the following data for the gas field	
Area = 160 acres	
Net productive thickness $= 40$ ft	
Initial reservoir pressure = 3250 psia	
Porosity = 22%	
Connate water $= 23\%$	
Initial gas $FVF = 0.00533$ ft3/SCF	
Gas FVF at 2500 psia = 0.00667 ft3/SCF	
Gas FVF at 500 psia = 0.03623 ft3/SCF	
Sgr after water invasion = 34%	
Calculate:	
1. Initial gas in place	
2. Gas in place after volumetric depletion to 2500 psia	
3. Gas in place after volumetric depletion to 500 psia	
4. Gas in place after water invasion at 3250 psia	
5. Gas in place after water invasion at 2500 psia	
6. Gas in place after water invasion at 500 psia	
7. Gas reserve by volumetric depletion to 500 psia	
8. Gas reserve by full water drive, i.e. at 3250 psia	
9. Gas reserve by partial water drive, i.e. at 2500 psia	