Name:

Enrolment No:

	T	10		PES	h 2024		
End Semester Examination, December 2024 Course: Monte Carlo Methods Program: B.Sc. Physics Course Code: PHYS3029P				Semester: V Time: 03 hrs. Max. Marks: 100			
	tions: empt the questions as per gi programmable scientific ca						
				ION A 20Marks)		
S. No.				- 01 (101111 5))	Marks	СО
Q 1	A call center receives phone calls according to a Poisson process with an average rate of 20 calls per hour. Calculate the probability that exactly 4 calls are received in a 10-minute period.					04	CO3
Q 2	 Suppose that P{X = a} = p, P{X = b} = 1 - p. (a) Show that ^{X-b}/_{a-b} is a Bernoulli random variable. (b) Find variance of X. 					04	CO2
Q 3	Define simple linear congruential method and use it to generate 3 random numbers with $X_0 = 27$, $a = 17$, $c = 43$, and $m = 100$.					04	CO1
Q 4	 Find the probability of randomly drawing two aces in succession from an ordinary deck of 52 playing cards if we sample (a) Without replacement, (b) With replacement. 					04	CO2
Q 5	What are some of the characteristics of pseudo-random number generator?					04	CO1
	1	,		TION B	````		
	Th	`	-	= 40 Mark bice in que	s) estion no 9		
Q 6	A Markov chain has 4-states and the following transition matrix:						
	0.2 0.1 0.4	0.3 0.2 0.1	0.2 0.3 0.2	0.3 0.4 0.3		10	CO1
	0.2	0.4	0.1	0.3			

	a) Draw the state transition diagram for this chain.b) Determine whether this Markov chain is irreducible and aperiodic.		
Q 7	Explain Monte Carlo simulation of radioactive decay.	10	CO3
Q 8	If X is a normal random variable with parameters $\mu = 10$ and $\sigma^2 = 36$.	10	0.03
	Compute (a) $P\{X > 5\};$ (b) $P\{4 < X < 16\};$ (c) $P\{X > 16\};$ (d) $P\{X < 8\}.$	10	CO2
Q 9	If the joint density function of X_1 and X_2 is given by $f(x_1, x_2) = \begin{cases} 1, & 0 < x_1 < 1, & 0 < x_2 < 1, \\ 0, & otherwise. \end{cases}$		
	Find		
	(a) the joint density of $Y = X_1 + X_2$ and $Z = X_2$; (b) the marginal density of Y.	10	CO2
	OR		
	If X and Y are independent Poisson random variables with respective parameters α_1 and α_2 , compute the distribution of $X + Y$.		
	SECTION-C (2Qx20M=40 Marks) There is internal choice in question no 11		
Q 10	Define Birth-death process with the help of its state transition diagram. Use pure birth process to prove that the number of births in the interval $(0, t)$ follows Poisson distribution.	20	CO3
Q 11	Generate a random variable X which follows normal distribution with mean, μ and variance σ^2 by using ratio of uniform method.		
	OR		
	Use inverse CDF method to generate a random variable X having probability density function $f(x) = \begin{cases} 2x, & 0 \le x_1 < 1, \\ 0, & otherwise. \end{cases}$ Write an algorithm for the same.	20	CO1