Name:		23511						
Enrolment No:			ow					
UPES End Semester Examination, December 2024 Course: Boolean Algebra & Automata Theory Program: B.Sc. (Hons.) Mathematics Course Code: MATH3040P Instructions: Answer all the questions.				Semester: V Time: 03 hrs. Max. Marks: 100				
SECTION A (5Qx4M=20Marks)								
S. No.			Marks	СО				
Q1.	Define AND, OR and NOT gates. Write corresponding to the following logic circuit. x_1 x_2 x_3 x_4	e the Boolean expression	4	CO1				
Q2.	Define (a) Complete lattice (b) Bou (c) Complemented lattice (d) Dist	nded lattice ributive lattice	4	CO2				
Q3.	Define Deterministic finite automata (DFA). all strings over $\Sigma = \{a, b\}$ where every accepted exactly two <i>a</i> 's i.e. $ w _a = 2$.	4	CO3					
Q4.	Define Context free grammar (CFG) and writ languages. (a) $\{a^n b^n n \ge 1\}$ (b) $\{a^{2n} b^n n \ge 0\}$	e the CFG for the following	4	CO4				
Q5.	Discuss Greibach Normal form (GNF) and c given by $G = \{S \rightarrow aAB \mid aB, A \rightarrow aA \mid \epsilon, B \rightarrow bB\}$	check whether the grammar $ \epsilon$ is in GNF or not.	4	C05				
 	SECT	ION B		1				
Q6.	Find the product of sum expansion of the follo (a) $f(x, y, z) = (x + z)y$. (b) $f(x, y, z) = xy'$.	owing functions.	10	CO2				

Q7.	Convert the following							
	a,l							
		10	CO3					
Q8.	Consider the following state-transition diagr							
	Present State	Next State Output						
		<i>a</i> = 0	a = 1					
	$\rightarrow a$	d	b	1	10	CO5		
	b	а	d	0				
	С	С	С	0				
	d	b	а	1				
Q9.	Convert the followin by documenting all t							
		10	CO4					
	State Pumping Lemme $L = \{ww^R \mid w \in \{0,1\}\}$							
SECTION-C (2Qx20M=40 Marks)								
Q10.	0. (a) Discuss in detail the Noam Chomsky classification of grammar							
	explaining the produ	20	COA					
	(b) Define pushdown language $L = \{a^n b^2\}$	20	CO4					
Q11.	Define Turing mach $L = \{wcw \mid w \in \{a, b\}\}$							
		20	COS					
	Discuss various typ problem. Show that	20	0.05					
	and $y = (b, bu, u)$							