Enrolment No:

	UPES		
Course	End Semester Examination, December 2024	Semester	: V
Course Program	8 8	Time	: v : 03 hrs.
0	Code: MATH3032	Max. Mark	
	tions: Attempt all questions from Section A (each carrying 4 marks); a		
	B (each carrying 10 marks) and attempt all questions from Section C (
Questio	n 8 and 10 have internal choice.		
	SECTION A		
<u>a 11</u>	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	A firm manufactures headache pills in two sizes <i>A</i> and <i>B</i> . Size <i>A</i> contains 2 grains of aspirin, 5 grains of bicarbonate and 1 grain of codeine. Size <i>B</i> contains 1 grain of aspirin, 8 grains of bicarbonate and 6 grains of codeine. It is found by users that it requires at least 12 grains of aspirin, 74 grains of bicarbonate and 24 grains of codeine for providing immediate effect. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a linear programming problem (LPP) model. Do not solve it.	4	CO1
Q 2	Determine all basic feasible solutions for the system of equations: $2x_1 + x_2 + 4x_3 = 11$ and $3x_1 + x_2 + 5x_3 = 14$.	4	CO1
Q 3	Construct the dual of the following LPP:		
	$Max. z = x_1 - x_2 + 3x_3$ subject to the constraints $x_1 + x_2 + x_3 \le 10, 2x_1 - x_3 \le 2, 2x_1 - 2x_2 + 3x_3 \le 6, \text{and}$ $x_1, x_2, x_3 \ge 0.$	4	CO2
Q 4	Define assignment problem. What is the mathematical formulation of an assignment problem?	4	CO2
Q 5	State Kuhn-Tucker necessary and sufficient conditions in non-linear programming.	4	CO3
	SECTION B	ı	I
	(4Qx10M= 40 Marks)		
Q 6	Show that the set $S = \{(x_1, x_2, x_3): 2x_1 - x_2 + x_3 \le 4\} \subset \mathbb{R}^3$, is a convex set.	10	CO1

Q 7	By applying the graphical method, solve the LPP: $Max. z = 60x_1 + 40x_2$ subject to the constraints: $x_1 + 2x_2 \le 12, 2x_1 + x_2 \le 12, x_1 + \frac{5}{4}x_2 \ge 5 \text{ and } x_1, x_2 \ge 0.$	10	CO1
Q 8	Determine an initial basic feasible solution to the following transportation problem using Vogel's method where O_i and D_j represents the <i>i</i> th origin and <i>j</i> th destination respectively. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO2
Q 9	Find the value of x_1 and x_2 for the optimum solution of the following non-linear programming problem: $Min. z = f(x_1, x_2) = 3e^{2x_1+1} + 2e^{x_2+5}$ subject to the constraints: $x_1 + x_2 = 7$, and $x_1, x_2 \ge 0$.SECTION-C	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Apply simplex method to solve the following LPP: $Max. z = 3x_1 + 5x_2 + 4x_3$ subject to the constraints $2x_1 + 3x_2 \le 8$ $2x_2 + 5x_3 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0.$	20	CO2

	OR Use penalty (Big-M) method to solve the following LPP: $Max. z = x_1 + 2x_2 + 3x_3 - x_4$ subject to the constraints $x_1 + 2x_2 + 3x_3 = 15$ $2x_1 + x_2 + 5x_3 = 20$ $x_1 + 2x_2 + x_3 + x_4 = 10$ and $x_1, x_2, x_3, x_4 \ge 0$.		
Q 11	Solve the non-linear programming problem: $Optimize \ z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$ subject to the constraints: $x_1 + x_2 + x_3 = 15, \ 2x_1 - x_2 + 2x_3 = 20, \ x_1, x_2, x_3 \ge 0.$	20	CO3