Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Programme Name: B.Sc. (H) Chemistry
Course Name: Organic Chemistry IV
Course Code: CHEM 3014

Semester: V
Time: 03 hrs
Max. Marks: 100

Nos. of page(s) : 2

Instructions: 1. Write your Enrollment number on the question paper.

2. Internal choices are given in question numbers 8 and 11.

3. Attempt all parts of a question at one place only.

SECTION A (50x4M=20Marks)

	(3QX4W1-20Wiai K5)				
S. No.		Marks	CO		
Q 1	Define the nitrogenous base present in the nucleic structure.	trogenous base present in the nucleic structure. 4			
Q 2	What is the general structure of amino acids? Why are they considered ampholytes?	4	CO1		
Q 3	Discuss the specificity of the enzyme in terms of geometric and electronic complimentary.	4	CO1		
Q 4	Calculate the number of carbon-to-carbon double bonds in linolenic acid (C ₁₈ H ₃₀ O ₂). Given that 7.7g of I ₂ reacts with 2.8g of linolenic acid.				
Q 5	Give the reaction for the synthesis of Adenine.	4	CO1		
	SECTION B		•		
	(4Qx10M= 40 Marks)				
Q 6	Elaborate the various factors affecting the enzymatic activity with the proper graphical explanation.	10	CO2		
Q 7	Define the Edman degradation method for the determination of the primary structure of peptide.	10 CO2			
Q 8	 i) Deduce the synthesis of ibuprofen. ii) Discuss the medicinal value of Azadirachtin. OR 	6+4	СО3		
	Explain the various forms and medicinal value of Vitamin C.	10			
Q 9	What is acid value? Explain the method of its determination with the significance.	10	CO2		

SECTION-C (2Qx20M=40 Marks)						
Q 10	i)	Define the significance and methods for the protection of N-terminus, C-terminus, and side chain terminus groups during peptide synthesis.	10+10	CO1		
	ii)	Deduce the Gabriel and Strecker's synthesis for the formation of amino acids	10+10	COI		
Q 11	i)	Elaborate the features of DNA double helical structure and hydron bonding base pair structure of adenine to thymine and Guanine to cytosine.	10+10			
	ii)	Deduce the whole mechanism for the conversion of NAD+ to NADH.				
	i) ii)	Elucidate the types of RNA and their functions in detail. Discuss the calorific value of food and how it is measured.				
				CO2		