Name:

Enrolment No:

	LIDES			
	UPES Fnd Semester Evamination December 2024			
End Semester Examination, December 2024Course: Introduction to Electricity & MagnetismSemester Examination, December 2024Program: B.Sc BSc-Geo & MathTCourse Code: PHYS2032N		Semester: III Time: 03 hrs. Max. Marks:	Semester: III Fime: 03 hrs. Max. Marks: 100	
Instruc	ctions: All questions are compulsory.			
	SECTION A			
	(5Qx4M=20Marks)		1	
S. No.		Marks	CO	
Q 1	State and prove Ampere's circuital law.	5	CO3	
Q 2	State and explain Faraday's laws of electromagnetic induction.	5	CO2	
Q 3	Distinguish diamagnetic, paramagnetic and ferromagnetic materials.	5	CO4	
Q 4	Write the Maxwell's equations in integral form.	5	CO4	
Q 5	The scalar field in a region is represented by $U = x^2y + xyz$. Find the gradient of the scalar field.	5	CO1	
	SECTION B			
	(4Qx10M= 40 Marks) Question no. 8 has an internal choice	ice.		
Q 6	What is a solenoid? Obtain an expression for the field on the axis of a solenoid.	10	CO3	
Q 7	Drive the equation of continuity and discuss its physical significance.	10	CO4	
Q 8	A coil consisting of 100 circular loops with a radius of 0.60 m carries a 5.0 A current. Along the axis, at what distance from the center of the coil is the magnetic field $\frac{1}{8}$ as great as it is at the center. OR Using Gauss's law of electrostatics, determine the electric field at a point due to an infinite plane sheet of charge.	10	CO2	
Q 9	 (a) Find the constant "a" for which vector A = (x + 3y)î + (y - 2z)ĵ + (x + az)k̂) is solenoidal. (b) For a vector field A, show that ∇ • ∇X A = 0; that is, the divergence of the curl of any vector field is zero. 	10	CO1	
	SECTION-C (20x20M-40 Marks) Quastion no. 10 has an internal abo	ice		
Q 10	(a) Define the capacitance of a capacitor. Calculate the capacitance of a parallel plate capacitor.	10	CO3	

	 (b) Two parallel plates of a capacitor having equal and opposite charges are separated by 6.00 mm thick dielectric material of dielectric constant 2.8. If the electric field strength inside is 10⁵ V/m. Determine the polarization vector, displacement vector, and energy density in the dielectric. 	10	
	OR		
	State the Gauss's law of electrostatics. If the electric charge Q is	20	
	distributed uniformly along an infinitely long, thin wire. The charge per		
	unit length is λ (assumed positive). Find the electric field at a distance <i>r</i>		
	from the wire field using Gauss's law.		
Q 11	(a) Deduce the equation for the propagation of plane electromagnetic	15	
	waves in free space. Show that electric and magnetic field vectors		
	are normal to each other.		CO4
	(b) The relative magnitude of \vec{H} in a plane wave is 1 amp./meter		
	Determine the magnitude of \vec{E} for a plane wave in free space.	5	