Name: Enrolment No:									
	UPED End Somester Examination December 2024								
Drog	End Semester Examination, December 2024								
Cou	ramme Name : M. Tech no	E Semester : II	hrc						
Cour	Course Code : HSES 8034 Max Marks: 100								
Course code: HSFS 8034IVIAX. IVIARKS: 100Nos. of $page(s)$: 07									
INOS.	or page(s) : 07								
Insti	uctions: Assume suitable d	ata wherever necessary. Answer should be to the point	ana prec	ise.					
		SECTION A							
		(30 Marks)							
S. N		Answer an question	Marks	6					
0.1	A hoisting system raises an 1	1200 ft section of drill nine in three stages:	IVIdIKS						
~ -	- First stage: Lifts 400 ft at 10) ft/min.							
	- Second stage: Lifts 400 ft a	t 8 ft/min.	5	CO1					
	- Third stage: Lifts 400 ft at 6	5 ft/min.							
	How much time will it take t	o lift the entire 1200 ft section of drill pipe?							
Q 2	Choose the best answer:								
	1. Which of the following is	the most effective way to reduce the risk of a blowout							
	during drilling operations?								
	 A. Using a larger drilling bit B. Properly maintaining and C. Drilling at faster speeds D. Using less drilling mud 	testing blowout preventers (BOP)							
	2. What does the term "kic	es the term "kick" refer to in the context of oil well drilling?							
	A. The process of sealing the B. The sudden influx of form C. The installation of drilling D. The final stage of the drill	e well after completion ation fluids into the wellbore equipment ing operation	10x2	CO1					
	3. Which of the following is during drilling operations?	the most important factor for maintaining well control	(20)						
	A. Monitoring the weight of B. Regularly checking for equ C. Maintaining mud density D. Using high-quality drilling	the drill string upment wear and proper circulation mud additives							
	4. In case of a well blowout	, which action should be taken first?							
	A. Activate the blowout prevB. Evacuate all personnel froC. Inform the environmentalD. Attempt to stop the flow	venter (BOP) om the rig I agencies manually							

5. What is the purpose of an Environmental Impact Assessment (EIA) in oil well drilling?		
 A. To evaluate the safety risks to the workers B. To determine the costs of the drilling project C. To assess the potential effects of the drilling operation on the environment D. To evaluate the efficiency of the drilling process 		
6. During drilling operations, if there is a risk of a fire or explosion, what is the primary safety equipment to have on hand?		
 A. Fire extinguisher and water source B. Personal protective equipment (PPE) C. Drilling mud and wellhead sealing equipment D. Flammable gas detector and fire suppression system 		
7. What is the purpose of well casing in drilling operations?		
A. To stabilize the wellbore and prevent collapseB. To measure the depth of the wellC. To increase the rate of fluid flow into the wellD. To control the pressure inside the well		
8. Which of the following is a major safety concern in offshore oil drilling operations?		
 A. Limited access to drilling tools B. Exposure to extreme temperatures C. Falling overboard and drowning D. Risk of oil spills and environmental contamination 		
9. What is the role of a Safety Officer on an oil drilling rig?		
 A. To ensure proper installation of the well casing B. To monitor the safety and health of all personnel on the rig C. To oversee the operation of the blowout preventer D. To manage the drilling fluids 		
10. What should be done in case of a toxic gas leak on the oil rig?		
 A. Evacuate the personnel and shut down all operations B. Increase ventilation to dilute the gas C. Continue with normal operations until the source of the leak is found D. Contact the emergency services without evacuating the rig 		
Q 3 "Nothing happens suddenly" This statement encourages mindfulness and deeper analysis of the processes leading to any event, reminding us to stay attentive to the journey rather than just the outcome.	5	CO4
Please express your opinion?		
SECTION B		
(15 Marks * 3 = 45 Marks)		

Q4	i. ii. iii.	 i. A drilling rig's hoisting system requires a torque of 250 ft-lbs to lift the load. If the radius of the draw work drum is 2 ft, what is the force exerted on the drum? If frictional losses in the hoisting system cause a 12% decrease in the effective force, calculate the new force exerted on the drum when the required torque remains 250 ft-lbs. ii. Why is early kick detection critical during drilling operations, and what are the key indicators used to identify a kick in the wellbore? iii. What are the key responsibilities of an HSE Engineer at a drilling rig site? 						
Q 5	(a)	Draw a neat diagram of drilling rig showing main components. What roles	5+4					
	(b)	 do they play in the drilling process? (b) A drilling mud is to be prepared by mixing 650 gallons of base oil with 450 gallons of water. If the density of the base oil is 8.5 lb/gal and the density of water is 8.34 lb/gal. calculate: 						
		ii. The total weight of the drilling fluid mix.						
		iii. The average density of the drilling fluid mix.						
Q6	On May 27 in the Tins environme communiti i.	5	CO4					
	ii.	In what ways has the blowout affected the surrounding environment,						
	iii.	including local ecosystems, water quality, and air pollution? What improvements should be made in safety protocols and risk management strategies to prevent such incidents from occurring in the future?	5					
	I	SECTION C	I	I				
		(25 Marks * 1 = 25 Marks)	1					
Q 7	А.	What are the key codes and standards commonly used in the oil and gas industry to ensure Health, Safety, and Environmental (HSE) compliance.	5					
	В.	Use the following data and fill out the killsheet.						
		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
		Kill rate pressure @ 50 spm= 990 psi.						
		Drill String:		CO3				
		Drill pipe 5.0 in -19.5 lb/ft capacity $= 0.01776$ bbl/ft.						
		HWDP 5.0 in-49.3 lb/ft Capacity $= 0.00883$ bbl/ft.L an ath 250 ft						
		Length $= 250 \text{ II.}$ Drill Collars 8.0 in OD = 3.0 in ID Capacity $= 0.0087 \text{ bbl/ft}$						
		Length $= 350 \text{ ft.}$						
		Annulus:	2x10=20					

	Hole Size =	12 ¼ in.
	Drill Collar/Open hole capacity	= 0.0836 bbl/ft.
	Drill Pipe/Open hole capacity	= 0.1215 bbl/ft.
	Drill Pipe/Casing Capacity	= 0.1303 bbl/ft.
	Mud pump	= 0.136 bbl/stk.
	Leak off test with 9.0 ppg mud	= 1130 psi.
	Casing setting depth	= 4000 psi.
	Shut in drill pipe pressure	= 440 psi.
	Shut in casing pressure	= 540 psi.
	Pit volume gain	= 35 bbl.
	True vertical depth	= 9,900 ft.
Also	o, fill the following data from fil	led kill sheet
(i)	Surface to Bit strokes	stks.
(ii)	Bit to shoe strokes	stks.
(iii)	Bit to surface volume	bbl.
(iv)	Kill mud weight	ppg.
(v)	Initial Circulating Pressure	psi.
(vi)	Final Circulating Pressure	psi.
(vii)) MAASP with current mud w	veightpsi.
(viii	i) MAASP after circulating kill	l mud psi.
(ix)	Time for complete one circul	lationmin.
	Pressure drop per 100 stroke	s psi.

International Surface BOP Vertical N	Well Con Vell Kill S	trol Forum heet (API F	ield Unit	s)	DATE : SAP NO :	
FORMATION STRENGTH DATA: SURFACE LEAK -OFF PRESSUR FORMATION STRENGTH TEST MUD WEIGHT AT TEST MAXIMUM ALLOWABLE MUD WE (B) + (A) SHOE T.V. DEPTH x 0.052	E FROM (A) (B) EIGHT = (C) 2	psi ppg	CUF CUR WEIG	RRENT WEL PRENT DRIL	<i>LING MUD:</i>	
INITIAL MAASP = ((C) - CURRENT MUD WEIGHT) x 3	SHOE T.V. DE	PTH x 0.052 psi 2 DISPL.	CAS SIZE M. D T.V. I	ING SHOE I EPTH DEPTH	DATA: inch feet feet	
bbls / stroke (PL) DYNA SLOW PUMP RATE DATA: PUMP NC SPM	MIC PRESSU	bbis / stro IRE LOSS [psi] PUMP NO. 2	ike HOL SIZE M. D T.V. I	E DATA: EPTH DEPTH	inch feet	
PRE-RECORDED VOLUME DATA: DRILL PIPE HEAVY WALL DRILL PIPE DRILL COLLARS DRILL STRING VOLUME	LENGTH feet	CAPACITY bbls / foot x x x x	VOL bar = = = (D)	UME rels + + +	PUMP STROKES strokes VOLUME PUMP DISPLACEMENT (E) strokes	TIME minutes PUMP STROKES SLOW PUMP RATE Min
DC x OPEN HOLE DP / HWDP x OPEN HOLE OPEN HOLE VOLUME		x x	= = (F)	+ bbls	strokes	Min
DP x CASING TOTAL ANNULUS VOLUME TOTAL WELL SYSTEM VOLUMF		x (F+G) = (H)	_=(G)	+ bbls	strokes	Min Min Min
ACTIVE SURFACE VOLUME	(J) (I+J)		bbls	strokes	Dr No SV 04/01	

KICK DATA: SIDPP psi SICP psi PIT GAIN barrels KILL MUD WEIGHT CURRENT MUD WEIGHT + SIDPP TVD x 0.052 ppg INITIAL CIRCULATING DYNAMIC PRESSURE LOSS + SIDPP	International Well Control Forum DATE :									
KILL MUD WEIGHT CURRENT MUD WEIGHT + SIDPP INMTIAL CIRCULATING DVNAMIC PRESSURE LOSS + SIDPP	KICK DATA : SIDPP	ps	si SI	CP	psi		PIT GAIN		barrels	
INTIAL CIRCULATING PRESSURE DYNAMIC PRESSURE LOSS + SIDPP ICP +	KILL MUD WEIGHT		CURRENT I	MUD WEIGHT X 0.05	$\frac{1}{52} + \frac{1}{52}$	SIDPP IVD x 0.052			ppg	
FINAL CIRCULATING PRESSURE FCP KILL MUD WEIGHT x DYNAMIC PRESSURE LOSS FCP x	INITIAL CIRCULATING PRESSURE ICP	DYNAMIC PF	RESSURE LOSS =	+ SIDPP					psi	
(K) = ICP - FCP = =	FINAL CIRCULATING PRESSURE FCP	K CUR	ILL MUD WEIGH RENT MUD WEI X	T GHT =	x DYNA	MIC PRESSI	JRE LOSS		psi	
	(K) = ICP - FCP =		=	psi (K) x	<u>100</u> =	X 10	0=	= psi 100 strokes		
	STROKES PRESSURE [psi]	STATIC & DYNAMIC DRILL PIPE PRESSURE [psi]								

Dr No SV 04/02 (Field Units) 27-0