Name:

Enrolment No:

UPES End Semester Examination, Dec. 2024

Course: Reservoir Geomechanics Programme: M. Sc. (Petroleum Geoscience) Course Code: PEGS 8021 Instructions: All questions are compulsory Semester: III Time: 3 hrs. Max. Marks: 100

SECTION A				
S No	(5Qx4IVI=20IVIAFKS)		CO	
D . 110.		Marks	CO	
Q 1	Explain the application of geomechanics in mature oil and gas fields	4	CO1	
Q 2	Express the following GEM data sources and its uses (a) Pressure while drilling (PWD) (b) Lost circulation	4	CO2	
Q 3	 (A) A circular solid piece of rock is tested in a compression-testing rig to examine its stress/strain behavior. The sample is 6 inches in diameter and 12 inches in length, with the compression load cell imposing a constant load of 10000 lbf equally at both top and bottom of the rock sample. Assuming a measured reduction in length of 0.02 inches. The compressive stress in the rock in pound foot per square inch is (i.) 353.7 (ii.) 250.9 (iii.) 265.5 (iv.) 365.9 	4	CO3	
Q 4	Explain the Lost circulation scenarios in detail.	4	CO1	
Q 5	Define the following: (a) Effective Stress (b) Deviatoric Stress.	4	CO2	
SECTION B				
(4Qx10M=40Marks)				
Q 6	Derive the formula to determine principal stresses and its orientation in two dimensions. OR The matrix below defines a given stress state. Determine the principal stresses	10	CO2	

	$[\sigma] = \begin{bmatrix} 16 & 3 & 3 \\ 3 & 12 & 6 \\ 3 & 6 & 12 \end{bmatrix}$			
Q 7	Examine the correlation suggested by E. M. Anderson's Faulting	10	CO3	
0.8	It has been determined that a point in a load carrying member is			
٧٥	subjected to the following stress condition:			
	$\sigma x = 400 \text{ MPa}$ $\sigma y = -300 \text{ MPa}$ $\tau xy = 200 \text{ MPa} (CW)$			
	Perform the following:	10	CO3	
	(a) Find maximum and minimum principal stress and maximum shear			
	(b) Draw the complete Mohr's circle labeling critical points			
09	Illustrate the following with suitable examples?			
	(i) Model calibration by	10	CO1	
	(ii) Optimizing Model Performances	10		
	(iii) Expert Knowledge			
SECTION-C (2Qx20M=40Marks)				
Q 10	Describe the following sand production prediction methods:			
	(a) Wellsite Engineering Method			
	(b) Stress-strain model			
	UK Laboratory test data show that confined compressive and tensile			
	strengths for a rock are 105 MPa and 12 MPa., respectively. Find	•	004	
	measurements indicates a joint persistence of 0.75. Further laboratory	20	CO4	
	testing shows the joint cohesion and friction angle are 0.09 MPa and			
	26°, respectively. Using the Terzaghi jointed rock mass model, estimate			
	the cohesion and angle of internal friction for infact rock tested in the laboratory, then determine the mass values of friction angle, cohesion			
	unconfined compressive strength, and tensile strength.			
Q 11	The triaxial testing data of the rock samples are illustrated in the table			
	below.			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$(\sigma_{1}, \sigma_{3})/2$ 1054.5 807 674 573 288 156.5	20	CO3	
	Determine the following			
	(i) Plot the Mohr circles for the data.			
	(ii) Draw a failure line on the top of the circles.			
	(iii) Develop equations for the failure model.			