Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: B.Tech. Mechanical Engineering Program: Computational Methods Course Code: MECH2080

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Compute all the answers up to three decimal places, wherever applicable.

SECTION A (5Qx4M=20Marks)										
S. No.							Marks	СО		
Q 1	Illustrate the convergence criteria of the Newton Raphson Iteration Method.							CO1		
Q 2	Prove that $\Delta \cdot \nabla = \Delta - \nabla$							CO2		
Q 3	$\begin{array}{c c} \text{Compute } f'(x) \\ \hline x & 1 \\ y & 1 \\ \end{array}$	1) for the c 2 8	lata given in 3 27	the followin 4 64	g table: 5 125	6 216	04	CO3		
Q 4	Write the algorithm of the <i>LU Decomposition</i> method.						04	CO4		
Q 5	Given $\frac{dy}{dx} = xy$, with the initial conditions $y(0) = 1$. Find $y(0.4)$ by Euler's Method taking the step length $h = 0.2$.							CO5		
SECTION B										
Q 6	Evaluate a root of the following equation $sin(x) + cos(x) = 1$ using Regula Falsi Method up to fourth iteration.						10	CO1		
Q 7	(a) Find t									
	x y	-1 9	0 5	23	5 15	5	10 CO2			

Q 8	Evaluate the integral $\int_{1.2}^{1.6} (x + \frac{1}{2}) dx$ using (i) Trapezoidal rule and (ii)					
	Simpson's rule taking four intervals.	10	CO3			
Q 9	 (a) Solve the following boundary value problem: y" + y = 0, y(0) = 0, y(π) = 4. OR (b) Solve the equation u_{tt} = 16u_{xx} subject to the conditions u(x, 0) = x²(5 - x), u_t(x, 0) = 0, u(0, t) = u(5, t) = 0, using Crank Nicolson method taking Δx = 1 upto t=1.25. 	10	CO6			
SECTION-C (2Qx20M=40 Marks)						
Q 10	(a) Solve the following system of equations by LU Decomposition method: $27 x_1 + 6 x_2 - x_3 = 85.10$ $6 x_1 + 15 x_2 + 2 x_3 = 72.00$ $x_1 + x_2 + 54 x_3 = 110.22$ OR (b) Use Gauss Seidel Method to solve the following system (up to fourth iteration). $7 x_1 + 2 x_2 - x_3 = 17.20$ $- x_1 + 9 x_2 + 2 x_3 = 18.90$ $x_1 + 5 x_2 - 11 x_3 = 28.05$	20	CO4			
Q 11	Given $\frac{dy}{dx} = x^2 + y^2$, with the initial conditions $y(1) = 0$. Find $y(1.3)$ by RK-4 Method taking the step length $h = 0.1$	20	CO5			