Name:

Enrolment No:

UPES omostor Examination Docom

End Semester Examination, December 2024

Course: Chemical Eng I (Thermodynamics & A. Inst.) – MECH2067 Semester: III Programme: BTech (FSE) Time: 03 hrs. Max. Marks: 100

Instructions: All Questions in Section A are compulsory. Section B has 4 Questions with Question 9 having an internal choice. Section C has 2 questions Question 10 having an internal choice. Answer all the questions sequentially.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО				
Q 1	Distinguish between an isolated system, a closed system, and an open system. Provide examples of each.	4	CO1				
Q2	Explain the First Law of Thermodynamics in your own words. How does it relate to the conservation of energy?A system undergoes a process in which it absorbs 50 J of heat and does 20 J of work on its surroundings. What is the change in internal energy of the system?	4	CO1				
Q3	A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in the adjacent figure. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank. $P = ?$	4	CO3				
Q4	What are the different types of level measurement devices used in industries? Discuss the working principle, advantages, and limitations of any two types and provide suitable examples.	4	CO2				
Q5	In context of spectrophotometry. How does electromagnetic radiation interact with matter at the molecular level? Discuss the specific effects of different types of electromagnetic radiation on molecules, including absorption, emission, and excitation.	4	CO2				
SECTION B							
(4Qx10M=40 Marks)							
Q6	 a) Write the general rate law expression for this reaction. b) What are the units of the rate constant (k) in the rate law? 	10	CO2				

	c) State Le Chateli								
	d) How does the or								
Q7	What is a reversible cyc	le? Explain the Carnot cycle with a neat sketch. Why is the				GOA			
	Carnot cycle considere	the most efficient cycle? What are the limitations of the				CO4			
08	Carnot cycle in practica								
Qo	How did it contribute	to our unders	s the primary objective of standing of energy conse	rvation and the					
	relationship between m	10							
Q9	State Bernoulli's princi								
	flowing out of a small of								
	state the assumptions m								
		10	CO3						
	A piston–cylinder devi								
	air is now compressed								
	cylinder remains consta								
	P-V diagram of the process.								
SECTION-C (20x20M=40 Marks)									
O10	Explain Joule-Thomson	n effect. Derive	the following expression.						
X		(∂T)	$1 \left[- (\partial P) \right]$						
	$\alpha_J = \left(\frac{\partial T}{\partial V}\right)_{U} = -\frac{T}{C_U} \left[T\left(\frac{\partial T}{\partial T}\right)_{U} - P\right]$								
	OR OR								
	Explain the concept of feedback control systems with a neat block diagram.								
	Discuss the role of various components like sensors, actuators, and controllers in a								
	feedback control system.								
	Describe the different types of controllers, such as Proportional (P), Integral (I),								
	and Derivative (D) con								
	combination (PID controller) can be used to achieve better control performance.								
Q11	Knowing kinetics of a chemical reaction is crucial for design of a chemical								
	reactor.								
	1) What are the	e various metho	ds used for the determination	on of rate					
	equations?								
	11) Using the initial rate and chemical data given in the table below.								
	Determine a) rate equation and b) the rate constant. H^+								
	CH ₃ COCH ₃ (a								
	Initial rate (mol dm ⁻³	Initial concentra	ation (mol dm ⁻³)		20	CO5			
	S ⁻¹)	[I ₂ (aq)]	[CH ₃ COCH ₃ (aq)]	[H ⁺ (aq)]					
	3.5 ×10 ⁻⁵	2.5×10 ⁻⁴	2.0×10 ⁻¹	5.0×10 ⁻³					
	3.5 ×10 ⁻⁵	1.5×10 ⁻⁴	2.0×10 ⁻¹	5.0×10 ⁻³					
	1.4×10 ⁻⁴	2.5×10 ⁻⁴	4.0×10 ⁻¹	1.0×10 ⁻²					
	7.0×10 ⁻⁵	2.5×10 ⁻⁴	4.0×10 ⁻¹	5.0×10 ⁻³					