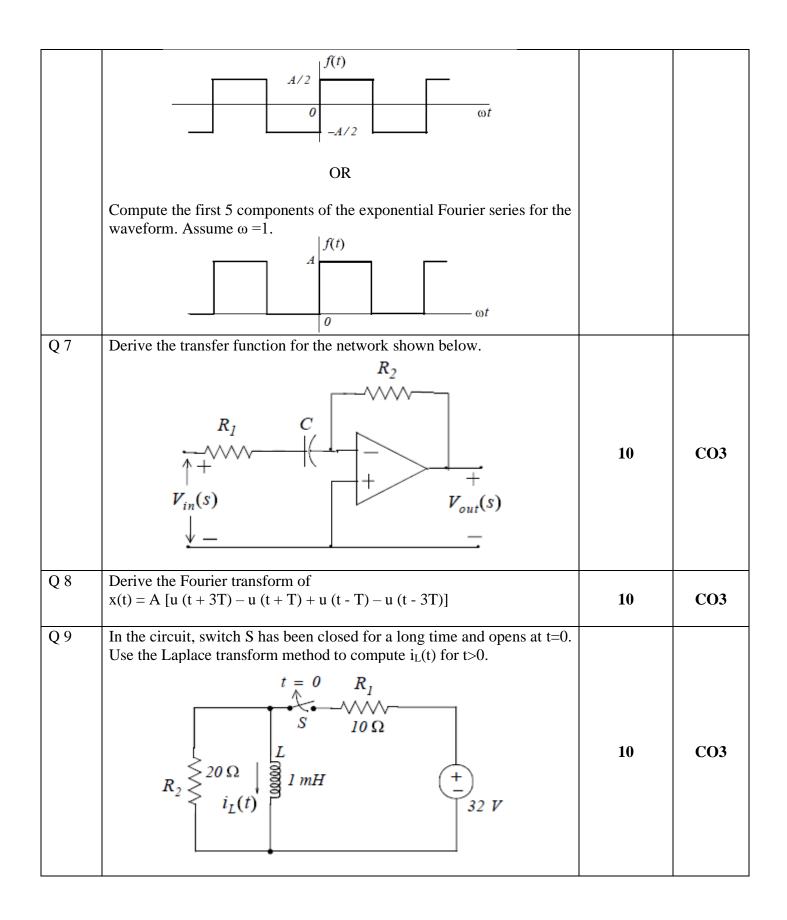
Name:

Enrolment No:



UPES End Semester Examination, December 2024

Course: Signals and Systems Program: B.Tech E&C Course Code: ECEG2045 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Read all the questions carefully. You can do it. All the best!

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Use the Initial Value Theorem to find $x(0)$ given that the Laplace transform of $x(t)$ is $(2s + 3) / (s^2 + 4.25s + 1)$	4	CO2	
Q 2	Use the partial fraction expansion method to compute the Inverse Z transform of $F(z) = \frac{1 + 2z^{-1} + z^{-3}}{(1 - z^{-1})(1 - 0.5z^{-1})}$	4	CO2	
Q 3	If 'a' is a real constant, and $F(\omega)$ is the Fourier transform of f(t), then prove, $f(at) \Leftrightarrow \frac{1}{ a } F\left(\frac{\omega}{a}\right)$	4	CO2	
Q 4	For the signals $x(t) = u(t)$ and $y(t) = u(t)$, determine the convolution result of $x(t)*y(t)$.	4	CO2	
Q 5	 Find the Laplace transform of the following time domain functions: a) 12 b) 6 u(t) c) 24 u(t-12) d) 5 t u(t) 	4	CO2	
	SECTION B			
Q 6	(4Qx10M= 40 Marks) Compute the first 5 components of the exponential Fourier series for the			
Ϋ́	waveform. Assume $\omega = 1$.	10	CO3	

	SECTION-C (2Qx20M=40 Marks)				
Q 10	Calculate the Z-Transform of the following signals & draw its ROC. a) Unit Impulse b) Unit Ramp c) Unit Step d) Sgnm				
	OR				
	In the circuit shown below, all initial conditions are zero. Write state equations in matrix form. $ \begin{array}{c} $	20	CO4		
Q 11	Find Laplace Transform of the following periodic waveforms.				
	(a) (b) T 2T T 2T T T 2T T T 2T T T 2T T T 2T T T 2T T T 2T T T 2T T T T T T T T T	20	CO4		