Name:		<u>VPES</u>				
UPES						
End Semester Examination, December 2024						
Programme Name: B.Tech. (Electronics and Computer Engineering). Semester : III						
Course Name : Analog Electronics-II Time: 03			8 hrs			
Course Code : ECEG 2065 Max. Ma						
Nos. of	Nos. of $page(s) : 2$					
Instructions: In Section B and C, one internal choice is provided in Q.9 and Q.11, respectively.						
SECTION A						
Answer all questions.						
S. No.			Marks	CO		
Q 1	Multiple choice question					
	(a) A summing amplifier can have					
	(i) only one input (ii) only two inputs (iii) any number of inputs (iv) none of these					
	(b) In a zero-level detector, the output changes state when the input					
	(i) is positive (ii) is negative (iii) crosses zero (iv) has a zero rate of change.			CO1		
	(c) The bandwidth of an ac amplifier having a lower critical frequency of 1 kHz and					
	an upper critical frequency of 10 kHz	IS				
	(i) 1 kHz (ii) 9 kHz (iii) 10 kHz (iv) 12	kHz.				
	(d) Common-mode gain of a practical	operational amplifier is				
	(i) very high (ii) very low (iii) always	unity (iv) unpredictable				
0.2	State True/False					
Q 2	(a) The gain-bandwidth product of an	Op-Amp remains constant regardless of the				
	frequency.	op i mp fomans constant regardiess of the				
	(b) A Schmitt Trigger is used to elim	inate noise from input signals by providing	4	CO1		
	hysteresis.		+	COI		
	(c) A low-pass filter using an Op-A	mp allows high-frequency signals to pass				
	while attenuating low-frequency s	signals.				
	(d) The common-mode rejection ratio	o (CMRR) of an ideal Op-Amp is zero.				
Q 3	An Op-Amp has a slew rate of 0.5 V/ μ	s. If the input signal changes by 2V, calculate	4	001		
	the minimum time required for the out	put to follow the input change. Show all steps	4	COI		
	of calculation.					
Q 4	An operational amplifier has a differe	ntial gain (A_d) of 2500 and a common-mode		aat		
	gain (A_{cm}) of 0.50. Calculate the CM	IRR in both ratio form and in decibels (dB).	4	COI		
	Show all steps of the calculation.					
Q 5	An A/D converter has a resolution of 8	bits and an input voltage range of 0 V to 5V.		~ ~ ~		
	Calculate the smallest voltage change t	hat can be represented by this converter. Show	4	CO3		
	all steps of the calculation.					
SECTION B						
Q 6	(a) Explain the working principle of	a phase shift oscillator using an operational	5	CON		
	amplifier. Draw its circuit diagram	and describe how the required phase shift is	3	002		
	achieved.					
	(b) Design a phase shift oscillator to g	enerate a trequency of 500 Hz. If the resistors	5	CO4		
	are all equal (\mathbf{K}) and the capaciton	is are identical (C), calculate the values of R	~	0.01		
	and C. Snow all steps of the calcul	auon.				

Q 7	Determine the output voltage V_0 for the given circuit. Provide all intermediate steps			
	involved in the calculations. $v_1 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_2 = 0.1 \text{ V}$ $v_3 = 0.1 \text{ V}$ $v_1 = 0.1 \text{ V}$	10	CO2	
Q 8	Draw a neat, labeled circuit diagram of a voltage series feedback amplifier. Derive expressions for the amplifier's closed-loop gain, input impedance, and output impedance, showing how they are affected by the feedback.	10	CO2	
Q 9	(a)Explain the working of a Schmitt Trigger circuit using an Op-Amp. Draw the circuit diagram and describe its significance in noise reduction. (b) A Schmitt Trigger has a supply voltage $V_{CC}=10V$, with resistors $R_1=10k\Omega$ and $R_2=90k\Omega$. Calculate the upper and lower threshold voltages.	10	CO2	
	OR Draw the circuit diagram of a voltage-to-current converter with ground load. Show that the load current depends on the input voltage v_{in} and input register R.			
	SECTION C			
Q 10	(a) Explain the operation of a 555 timer in monostable mode. Draw the circuit diagram and describe one practical application. (b) A 555 timer is used in monostable mode with a resistor $R = 5 k\Omega$ and a capacitor C=10 µF. Calculate the pulse width of the output signal.	10	CO3	
Q 11	(a) Draw a clear, labeled circuit diagram of a wide band-reject filter. Additionally, illustrate its frequency response, highlighting the lower and upper cutoff frequencies.	10	CO3	
	(b) Design a wide band-reject filter with $f_H = 200 Hz$, $f_L = 1000 Hz$, and pass- band gain of 2. Also draw an approximate frequency response plot for the filter.	10	CO4	
	OR			
	(a) Draw a labeled circuit diagram of a sample and hold circuit. Additionally illustrate its input and output waveforms, explaining how the circuit function during the sampling and holding phases.		CO3	
	 (b) Draw a labeled circuit diagram of a 4-bit D/A converter using a binary-weighted resistor network. Create a table showing the output voltage corresponding to each 		CO3	