Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Building Materials and Concrete Technology Program: B. Tech. Civil Engineering Course Code: CIVL2036 Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: Assume suitable values for any missing data

	SECTION A (5Qx4M=20Marks)							
S. No.		Marks	СО					
Q1	Write the advantages and disadvantages of steel as a construction material.	4	CO2					
Q2	What is a truss? What type of forces are the truss members subjected to? What is the minimum number of members required to make a stable truss with 7 joints?	^{is} 4 CC						
Q3	Discuss dots and screeds in plastering with the help of neat sketches.	4	CO2					
Q4	Explain the concept of sustainable construction and its significance.	4	CO3					
Q5	What is workability and how is it measured? Briefly discuss the effect of recycled concrete aggregates on the workability.	4	CO3					
SECTION B								
	(4Qx10M= 40 Marks)		_					
Q6	Discuss in detail the importance of painting, constituents of paint and various defects in paint.	10	CO2					
	OR Discuss the advantages and disadvantages of bolted connections in structural design. With the help of sketches, explain different types of bolted connections commonly used in construction.							
Q7	Explain Construction and Demolition Waste (CDW) and discuss the importance of recycling it. Additionally, analyze the environmental impacts of a concrete structure from its cradle to grave.	10	CO3					
Q8	Discuss why it is required to produce geopolymer concrete and how this can be done. Additionally, provide a list of factors that might affect the properties of geopolymer concrete.	10	CO3					
Q9	Describe the concept of green building and provide a brief overview of the various green building rating systems.	10	CO4					
	SECTION-C (2Qx20M=40 Marks)							

Q10 Det Al inf Det con of im	Describe how the construction industry contributes to various sustainability issues. Also, discuss the key principles of sustainable construction and the factors that influence the choice of construction materials to promote sustainability. OR Describe recycled aggregate concrete and how it differs from conventional concrete. Discuss the various factors that affect the fresh and hardened properties of recycled aggregate concrete. Additionally, explain the different methods to improve the properties of recycled aggregate concrete.					
Q11 Pro Fa of Wo of con con Th con ag, by	of coarse aggregate: 20 mm; Exposure condition: Severe (Reinforced concrete Workability: 120 mm (slump); Specific gravity of cement: 3.15; Specific gravity of fine and coarse aggregate are 2.70 and 2.75 respectively; Water absorption coarse ad fine aggregates are 0.5 and 0.7% percent respectively; Fine aggregate conform to Zone III as per IS 383: 2016; Specific gravity of superplasticizer: 1.1 The following figures and table may be used, if necessary. What changes in t concrete mix proportioning would you suggest if 75% of the natural coar aggregates were replaced by recycled coarse aggregates (specific gravity = 2.4 by both volume and by weight? Table 3 Approximate Air Content (Clauxe 5.2) Table 4 Water Content per Cubic Metre of Concrete For Nominal Maximum Size (Clauxe 5.3) Table 4 Water Content per Cubic Metre of Aggregate (1) (2) (3) Table 4 Water Content per Cubic Metre of Concrete For Nominal Maximum Size of Aggregate (Clauxe 5.3) Table 5 Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate min (Clauxe 5.5) Table 5 Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate min (Clauxe 5.5) Table 5 Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate min (Clauxe 5.5) St Nominal Maximum Size (Clauxe 5.5) St Nominal Maximum Size (Cl					CO3

