Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: B.Tech. Aerospace Engineering Program: Computational Techniques Course Code: CSEG2048

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Compute all the answers up to three decimal places, wherever applicable.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Illustrate Truncation error and Round Off error.	04	CO1
Q 2	Evaluate a root lying between (3,4) of the following equation $x^3 - 8x - 4 = 0$ by Newton Raphson Methd up to third iteration.	04	CO2
Q 3	Prove that $\Delta = E - 1$.	04	CO3
Q 4	Formulate the forward difference table for the following data:		
	x 1 1.1 1.2 1.3	04	CO3
	y 0.8415 0.8912 0.9320 0.9636	U -	
Q 5	Evaluate the integral $\int_{1.2}^{1.6} \left(x + \frac{1}{x}\right) dx$ using Trapezoidal rule taking four intervals.	04	CO4
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Use Gauss Elimination Method to solve the following system:		
	$x_1 + 2 x_2 + 3x_3 = 10$ $x_1 + 3 x_2 - 2x_3 = 7$ $2x_1 - x_2 + x_3 = 5$	10	CO1
Q 7	Evaluate a root of the following equation $sin(x) + cos(x) = 1$ using Regula Falsi Method up to fourth iteration.	10	CO2

Q 8	Given $\frac{dy}{dx} = \frac{-y}{x+1}$, with the initial conditions $y(0.3) = 2$. Find $y(0.8)$ by						
	Euler's Method taking the step length $h = 0.1$.				10	CO4	
Q 9	(a) Find the least square fit of the curve of the form $y = a_{0+}a_1x^2$ to the following data: $\boxed{\begin{array}{c c} x & -1 & 0 & 1 & 2\\ y & 2 & 5 & 3 & 0 \end{array}}$ OR (b) Fit a second degree parabola to the following data:				10	CO5	
	x 1 1.4 y 1.1 1.4			3.5 .7 3.4	4.1		
		(2	SECTIO 2Qx20M=40				
Q 10	(a) Find by Lagrange's formula, the interpolation polynomial which corresponds to the following data:						
	x 0	1	2				
	y 1	2	11		34		
	Hence, find the value of $y(1.5)$.						
	OR						
	(b)(i) Find the divided differences for equispaced arguments.						CO3
		(ii) Compute $y(1.25)$ from the following table using Newton's Divided Difference formula:					
			he following	table using	Newton's		
			he following	table using	Newton's		
	Divided Difference fo	ormula:					
	Divided Difference for	ormula:	1.3	1.5	1.6		