Name:

Enrolment No:

UPES emester Evamination December

End Semester Examination, December 2024

Course: Ordinary Differential Equations (Minor) Program: B.Sc. (H) Physics by Research Course Code: MATH2048

Semester: III Time: 03 hrs Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1. Mention Name and Roll No. at the top of the question paper.
- 2. Attempt all questions. There are internal choices for question 9 and question 11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Solve the following differential equation by using a suitable method: (2x - y + 1)dx + (2y - x - 1)dy = 0	4	CO1	
Q 2	Solve the following differential equation $(D^3 + 3D^2 + 3D + 1)y = 0; D \equiv \frac{d}{dx}$	4	CO3	
Q 3	A metal bar at a temperature of 100° F is placed in a room at a constant temperature of 0° F. If after 20 minutes the temperature of the bar is half, find an expression for the temperature of the bar at any time.	4	CO2	
Q 4	Solve the following differential equation $(x^{2}-4xy-2y^{2}) dx + (y^{2}-4xy-2x^{2}) dy = 0$	4	CO1	
Q 5	Find the particular integral of $(D^2 - 6D + 8)y = (e^{2x} + 1)^2; D \equiv \frac{d}{dx}$	4	CO3	
SECTION B				
(4Qx10M= 40 Marks)				
Q6	Solve the following differential equation $(D^4 - m^4)y = \sin mx ; D \equiv \frac{d}{dx}$	10	CO3	
Q 7	Solve the following differential equation using method of undetermined coefficients $(D^2 + 3D + 2)y = x + \cos x$; $D \equiv \frac{d}{dx}$	10	CO3	

Q 8	A certain radioactive material is known to decay at rate proportional to the amount present. If initially 500 mg of the material is present and after 3 years 20 per cent of the original mass has decayed, find an expression for the mass at any time.	10	CO2
Q 9	Find the solution of the following differential equation, passes through (0,0). $\left(xy^2 + e^{-\frac{1}{x^3}}\right)dx - x^2ydy = 0$ OR	10	CO1
	Reduce the equation $xp^2 - 2yp + x + 2y = 0$ to Clairaut's form by using substitution $y = u$ and $xy = v$ and hence find its general and singular solution		
SECTION-C (2Qx20M=40 Marks)			
Q 10	Explain the SIR model for influenza. Further, let in a population of 1000 people, 990 are susceptible, 10 are infected, and none have recovered at time t=0. If the transmission rate β is 0.3 and the recovery rate γ is 0.1. Find the rate of change of susceptible, infected, and recovered individuals. Also determining the basic reproduction number.	20	CO4
Q. 11	Solve the following nonhomogeneous linear differential equation by using variation of parameter method: $(D^2 + 4)y = \cot 2x ; D \equiv \frac{d}{dx}$ OR Solve the following Cauchy- Euler linear differential equation: $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{d^2x} + x \frac{dy}{dx} + 8y = 65\cos(\log x)$	20	CO3