Name:

Enrolment No:

UPES **End Semester Examination, December 2024 Course: Fundamentals of Reservoir Engineering** Semester: III **Program: B.Tech Applied Petroleum Engineering** : 03 hrs. Time **Course Code: PEAU 2022** Max. Marks: 100 Instructions: 1) All questions are mandatory. 2) Under section B, O 9 has Internal Choice. 3) Assume any data if required. **SECTION A** (5Qx4M=20Marks) S. No. CO Marks Q 1 Recognize various factors that have a major role in understanding the hydrocarbon reservoir? Also, the parameters that are effected by **4M CO2** reservoir fluid properties. Q 2 Define the terms a) Compressibility Factor, b) Formation Gas Oil Ratio, **4M CO1** c) Production Gas Oil Ratio and d) Oil Formation Volume Factor. Q 3 A reservoir has a total pore volume of 1,000,000 cubic meters and a porosity of 20%. Calculate the reservoir's bulk volume and the solid **CO3 4M** matrix's occupied volume? Explain what reservoir depletion means and the impact it has on phase **O**4 **4M CO3** behavior and fluid distribution. Consider a reservoir being produced by a solution gas drive mechanism. Q 5 The pressure has declined significantly. What steps could be taken to **4M** CO₂ improve recovery? **SECTION B** (4Qx10M= 40 Marks) Outline the material balance equation for a gas reservoir and discuss its Q 6 **10M CO2** primary assumptions. "When a wetting and a non-wetting phase flow together in a reservoir Q 7 rock, each phase follows separate and distinct paths." Justify how the **10M CO3** presence of one phase effects the fluid flow in porous and permeable media with the help of a graph. Q 8 A reservoir has the following properties: Original oil in place (OOIP) = 1,500,000 stock tank barrels (STB) **10M CO4** • Initial pressure = 4,000 psi Bubble point pressure = 2,500 psi

• Current reservoir pressure = 2,800 psi

Q 9	 Oil formation volume factor at initial pressure, Boi=1.25 RB/STB Current oil formation volume factor, Bo=1.30 RB/STB Oil produced so far = 300,000 STB Initial gas solubility, Rsi=600 scf/STB Current gas solubility, Rs=400 scf/STB Solution gas-oil ratio = 400 scf/STB Assume negligible water production and calculate the following: The current oil in place. Cumulative gas produced. Create a detailed flowchart illustrating the decision-making process for selecting an appropriate reservoir drive mechanism during the development phase of an oilfield. Include reservoir pressure, fluid properties, and economic considerations in your flowchart. 	10M	CO3
	(OR)		
Q 9	 (i) List and briefly describe the main drive mechanisms in oil reservoirs. (ii) Explain why understanding these mechanisms is crucial for optimizing oil extraction processes. 	5M + 5M	CO3
	SECTION-C (2Qx20M=40 Marks)		-
Q 10	 a) Compare and contrast the phase diagrams of a single-component hydrocarbon system and a multi-component hydrocarbon system. Highlight the key differences in terms of phase boundaries, critical points, and phase behavior complexities. b) Illustrate different techniques used for hydrocarbon reservoir fluid sampling, and how they vary based on the type of reservoir and fluid composition. 	10M + 10M	CO3
Q 11	The following data are given for the Bell Gas Field: Area = 160 acres. Net productive thickness = 40 ft . Initial reservoir pressure = 3250 psia. Porosity = 22% Connate water = 23% Initial gas FVF = 0.00533 ft3/SCF Gas FVF at 2500 psia = 0.00667 ft3/SCF Gas FVF at 500 psia = 0.03623 ft3/SCF Sgr after water invasion = 34% Find the following: 1) Initial gas in place 2) Gas in place after volumetric depletion to 2500 psia 3) Gas in place after volumetric depletion to 500 psia 4) Gas in place after water invasion at 3250 psia 5) Gas in place after water invasion at 2500 psia 6) Gas in place after water invasion at 500 psia 7) Gas reserve by volumetric depletion to 500 psia 8) Gas reserve by full water drive; i.e. at 3250 psia	20M	CO4

9) Gas reserve by partial water drive; i.e. at 2500 psia	