Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Programming **Program:** B. Tech (APE UP) **Course Code:** CSEG1029 Semester: III Time : 03 hrs Max. Marks: 100

Instructions: (a) This is a closed book exam. Possessing a mobile phone and any other communication devices during the exam is strictly prohibited.

(b) All programs should be written in clear and correct indentation.

SECTION A $(5Q \times 4M = 20 \text{ Marks})$						
S. No.	Statement (s) of the question (s)		СО			
Q 1	Write a python code to (a) define a range named series containing the following elements below: -2 -4 -6 -8 -10 -12 -14 -16 (b) Convert the range data type to a list data type and assign the list to a variable named series_lst	2 + 2	C01			
Q 2	 Write a python code to (a) define a dictionary named fuel_oil that can store its physical properties, density (930), viscosity (0.005) and specific heat (2.122. (b) Use a method to find the value associated with density 	2 + 2	C01			
Q 3	Write a python code to print star patterns (*) with 15 numbers of rows. Each row contains 5 numbers of stars. Use of loop is compulsory.	4	CO2			
Q 4	 (a) Write a python program to create a user-define function named sq_root that returns the square root of an input number. (Example: square root of 9 is √9 = 3). In-built functions is not allowed. (b) Print the following words in its exact form as output containing all alphabets and special characters below: "python's \n code" 	2 + 2	CO1			
Q 5	Write a python code to create a function named my_length that returns the number of elements present in a string. Here, len() is not allowed.	4	CO3			
	SECTION B (4Q x 10M = 40 Marks)					
Q 6	(i) Write a python program to create a function named result that returns a list containing the values of $f(x)$. Here, $f(x) = 2x^3 + x^2 + 3x$ -4 (Use of loop is compulsory)	6+2+ 2	CO2			

	(ii) Call the function to return a list conta $f(0.3), \dots, f(0.8), f(0.9), f(1.0)$. Assign the (iii) Call the function to return a list conta $f(0.8), \dots, f(1.6), f(1.8), f(2.0)$. Assign the			
Q 7	Write a python code to print the following number pattern, exactly as shown in Fig. 1 . OR Write a python code to print the following number pattern, as shown in Fig. 1 , but inverted i.e. upside down.			CO2
Q 8	 Write a python program that counts the frequency of occurrence of words in a string named sentence and store the data in a dictionary (named freq). The dictionary should contain all the words as keys and the frequency as values. The method .count() is not allowed. Start with the code below: sentence = "years and years of coding and executing" 			CO2
Q 9	Write python code to create a function named my_sort that takes a list (containing zeros, positive number, and negative numbers) as input parameter and returns a nested tuple containing three lists as an output parameter. One list containing only even numbers, other list only contains negative numbers, and the last list only contains zeros.			CO4
	SECTION C (2	Q x 20M = 40 Marks)		
Q 10	Analyze the python codes below to predic (i) $\operatorname{print}(7//3)$	t the outputs: (2 marks each)		
	(i) $print(775)$ (ii) $print(17\%3)$	Output:		
	(ii) $prim(17703)$ (iii) $str1 = "program of python"$	Output		
	nrint(str1[6]*3)	Output:		
	(iv) print(str1[1:11:2])	Output:		
	(v) princ(sir[1:1:2])	<u> </u>		
	water.append("density")			
	print(water)	Output:	20	CO4
	(vi) word = "she"			
	for i in word:			
	print("welcome {}".format(i))	Output:		
	(vii) a, b, c, d = 1, 2, 3, 4			
	$\frac{\text{print}(a > c^* b)}{(viii) \text{ print}(a < b ar a > d)}$	Output:		
	(v_{III}) prim($c < 0$ or $a > 0$) (iv) print(5 in [7 675 "float" 5])	Output:		
	(x) print(3 m [7.073, moat, 5])	Output:		
0.11	Imagine that an excel file named raw	sy is stored in IDLE working		
× · ·	directory or folder. The data in rows and columns are shown in Table 1 .			
	Write a python program to find the conce	ntration (c) of acetic acid for all		

samples a sample as	nd store the data in a keys and the concent	dictionary named tration as values.	a sample with the name of		
$(c = \frac{1}{vol})$	volume of ace lume of acetic acid+	tic acid volume of water)		CO4
		OR		20	
Imagine t is stored i are shown (x) of ace fraction $(x = \frac{1}{vo})$					
Table 1: Sa	mple of volume of ac	etic acid and volu	ume of		
water mixed at different ratios. 9					
Sample	acetic acid (ml)	water (ml)	98		
Α	5	1	987		
В	4	2	9870	5	
С	3	3	5432	1	
D	2	4	Fig. 1: Triangul	ar pattern	
Е	1	5		1	