Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Ordinary Differential Equations (Major) Program: B.Sc. (H) Mathematics by Research Course Code: MATH2048

Semester: III Time: 03 hrs Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1. Mention Name and Roll No. at the top of the question paper.
- 2. Attempt all questions. There are internal choices for question 9 and question 11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Solve the following differential equation by using suitable method: $\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$	4	C01	
Q 2	Solve the following differential equation $(D^3 + 3D^2 + 3D)y = 0 D \equiv \frac{d}{dx}$	4	CO3	
Q 3	In a certain country, the population gets tripled in 5 years and after 10 years, the population is 20,000. Find the number of people initially being living in the city.	4	CO2	
Q 4	Explain homogeneous differential equation. Hence, solve the following differential equation: (4y + 3x)dy + (y - 2x)dx = 0	4	C01	
Q 5	Find the particular integral of the following differential equation $(D^2 - 3D + 4)y = e^{2x} \sin 2x; D \equiv \frac{d}{dx}$	4	CO3	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Solve the following differential equation using method of undetermined coefficients: $(D^2 - 2D + 3)y = x^3 + \sin x; D \equiv \frac{d}{dx}$	10	CO3	

Q 7	Solve the following differential equation		
	$(D-1)^2 (D^2+1)^2 y = \sin x; D \equiv \frac{d}{dx}$	10	CO3
Q 8	 Assume that the rate at which radioactive nuclei decay is proportional to the number of nuclei in a sample. In a certain sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of 200 years. Then evaluate the following: (i) What percentage of the original radioactive nuclei will remain after 1000 years? (ii) In how many years will only one- fourth of the original number remain? 	10	CO2
Q 9	Reduce $y = 2px + y^2p^3$ to Clairaut's form by using a suitable substitution and hence find its general and singular solution.		
	OR Find the solution of the following differential equation, which passes through (0,0): $\frac{dy}{dx} + \frac{1}{x}(\sin 2y) = x^2 \cos^2 y$	10	CO1
SECTION-C (2Qx20M=40 Marks)			
Q 10	Explain the Lotka-Volterra Model. Further, let a population of rabbits (prey) grows at a rate of $\alpha = 0.5$ per year in the absence of predators, and the foxes (predators) have a death rate of $\gamma = 0.3$ per year. The rate at which foxes kill rabbits is $\beta = 0.01$ per rabbit per fox, and the growth rate of the fox population per rabbit eaten is $\delta=0.02$. Find the equilibrium populations of rabbits and foxes.	20	CO4
Q. 11	Solve the following nonhomogeneous linear differential equation by using variation of parameter method: $(D^2 + 1)y = \sec x; D \equiv \frac{d}{dx}$ OR Solve the following Cauchy-Euler differential equation: $(x^4D^4 + 6x^3D^3 + 4x^2D^2 - 2xD - 4)y = 2\cos(\log x);$ $D \equiv \frac{d}{dx}$	20	CO3