Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Components of Automotive Chassis Semester: 3^{rd}

Program: B.Tech ADE Time : 03 hrs. **Course Code: MEAD2013** Max. Marks: 100

Instructions: N/A

SECTION A
(5Qx4M=20Marks)

(5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	Define a vehicle suspension system and enlist its primary functions and requirements.	4	CO1	
Q 2	Define the following terms with respect to vehicle chassis, (a) Ladder frame, (b) Body in white (BIW), (c) Crumple zones, (d) Bending and torsional rigidity.	4	CO2	
Q 3	What are the different sections used in the rigid front axle of a commercial vehicle. Justify the usage of these sections.	4	CO1	
Q 4	Distinguish between single plate and multiplate clutch.	4	CO2	
Q 5	Discuss the difference between passive and active safety systems in vehicles, providing examples of each.	4	CO1	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Explain the following terms: (a) Energy equation, (b) Stiff cage structural concept, (c) Controlled progressive crush and deformation with limited intrusions.	10	CO2	
Q 7	Describe the differences between ladder frame and monocoque frame construction in automobiles. What are the primary structural and functional advantages of each type?	10	CO2	
Q 8	Define the terms "caster," "camber," and "toe" in the context of steering geometry. How does each angle impact vehicle handling and safety?	10	CO3	
Q 9	List the different types of springs used in suspension systems and describe the characteristics of each type in terms of load-bearing capacity and durability.	10	CO4	

SECTION-C (2Qx20M=40 Marks)				
Q 10	Analyze the primary functions of a vehicle suspension system and its impact on front axle stability and steering performance. Compare the double-wishbone and multilink suspension systems, discussing how each influences vehicle handling and stability, particularly in high-speed and rough terrain conditions.	20	СОЗ	
Q 11	Evaluate the performance of a semi-elliptical spring by deriving the expressions for maximum bending stress and central deflection under a load W applied at the center. Additionally, assess the suitability of various materials used in the manufacturing of semi-elliptical springs. OR	20	CO4	
	Discuss the function of anti-roll bars in a suspension system. How do they improve stability, and why are they important in performance vehicles?			