Name:

Enrolment No:

UPES

End Semester Examination, December 2024

Course: Analog Systems and Applications Program: BSc Physics with Research Course Code: PHYS2025 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Use of scientific calculators is allowed. Q9 and Q10 are having internal choice.

SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Calculate I_E in a transistor if $\beta = 50$ and $I_B = 20 \ \mu A$.	4	CO1	
Q2	A power transistor working in class A operation has zero signal power dissipation of 10 watts. If the a.c. output power is 4 watts find; (i) Collector efficiency, (ii) power rating of transistor.	4	CO2	
Q3	With a negative feedback, an amplifier gives an output of 10 V with an input of 0.5V. when feedback is removed, it requires 0.25 V input for the same output. Calculate, (i) gain without feedback, (ii) feedback fraction.	4	CO2	
Q4	Measurements of a circuit gives the following h-parameters; $h_{11} = 10$ k Ω , $h_{12} = 0.5$, $h_{21} = 100$, $h_{22} = 2$ mS. Find v_1 , i_2 , if $i_1 = 1$ mA, $v_2 = 2$ V.	4	CO3	
Q5	Discuss the principle and working of Photo-diodes with V-I characteristics.	4	CO1	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Why filter circuits are needed? Give types of Filter circuits. Discuss the circuit diagram of π -section filter circuit by explaining the role of each element in rectification.	2+2+6 = 10	CO2	
Q7	What is phase reversal? Describe a phase reversal for a CE mode transistor by developing a load line and Q point.	10	CO2	
Q8	Analyze the gain in negative feed-back amplifier. Discuss the, (i) gain stability, (ii) input impedance for negative feedback.	10	CO4	
Q9	 What is R-C coupled amplifier? Derive an equivalent circuit for it and discuss the frequency response at low, mid and high frequency regions. Or How transistor amplifies a signal and why the phase of a signal voltage and output voltage undergoes a phase reversal? Provide a transistor circuit in CE mode for phase reversal and, also, analyze the graphical parameters (I_C, V_{CE}, and I_B) for typical phase reversal phenomena. 	10	CO3	

SECTION-C (2Qx20M=40 Marks)				
Q10	Derive and Apply the Barkhausen criterion for sustained oscillations and, thus, discuss the Tuned collector Oscillator and formulate its output frequency. Or Discuss the circuit operations, by emphasizing the role of each component, of; (i) Colpitt's oscillator, (ii) Hartley's oscillator. And, also, evaluate output frequency of each oscillator by addressing the advantage/disadvantage of one over the other oscillator.	20	CO3	
Q11	Formulate the voltage gain, by discussing the principle and working, of; (i) Non-inverting amplifier, (ii) Voltage follower, (iii) Subtractor, (iv) Integrator.	20	CO4	