Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Integral Calculus Program: B.Sc. (H) Mathematics by Research Course Code: MATH 2056 Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. There are internal choices in the question number 6 and 10.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	For any function $\phi(x)$, show that $\int_a^b \phi(x) dx = -\int_b^a \phi(x) dx$.	4	C01	
Q 2	Define the improper integrals of second kind with the help of an example.	4	CO2	
Q 3	Prove that $\Gamma(1+n)\Gamma(1-n) = \frac{n\pi}{\sin n\pi}$.	4	CO2	
Q 4	Show that the area of the circle $x^2 + y^2 = a^2$ is πa^2 using the double integration.	4	CO3	
Q 5	For any position vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $ \vec{r} = r$. Show that $\nabla r^n = nr^{n-2}\vec{r}$.	4	CO4	
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	If $u_n = \int_0^{\frac{\pi}{2}} x^n \sin mx dx$, prove that			
	$u_n = \frac{n\pi^{n-1}}{m^2 2^{n-1}} - \frac{n(n-1)}{m^2} u_{n-2},$	10	C01	
	if m is of the form $4r + 1$.			
	OR			
	Find the reduction formula for $\int e^{ax} \sin^n bx dx$.			
Q 7	Check whether the integral $\int_0^\infty e^{-a^2x^2} \cos bx dx$ converges absolutely or not?	10	CO2	
Q 8	Evaluate $\iint_R y^2 dx dy$ over the area outside $x^2 + y^2 - ax = 0$ and inside $x^2 + y^2 - 2ax = 0$.	10	CO3	

Q 9	A particle moves along the curve $\vec{r} = (t^3 - 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 - 3t^3)\hat{k}$, where t is the time. Find the magnitude of the tangential components of its acceleration at $t = 2$.	10	CO4		
	SECTION-C				
(2Qx20M=40 Marks)					
Q 10	Transform $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sqrt{\left(\frac{\sin \phi}{\sin \theta}\right)} d\phi d\theta}$ by the substitution $x = \sin \phi \cos \theta$, $y = \sin \phi \sin \theta$ and show that its value is π . OR Find the volume cut off from the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ by the cylinder $x^{2} + y^{2} = ax$.	20	CO2		
Q 11	State and prove the Green's theorem for a plane.	20	CO4		