Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Physical Chemistry Program: Elective BSc(H) Maths/Physics/Geology Course Code: CHEM 2038

Semester : III Time : 03 hrs. Max. Marks: 100

Instructions: Answer all the questions. Internal choice is given in Q9 and Q11.

	SECTION A				
(5Qx4M=20Marks)					
S. No.		Marks	CO		
Q 1	The rise of water level in a capillary of radius 0.2 mm at 20 0 C is 7.4 cm. Calculate the surface tension of water taking its density as 1 g cm ⁻³ at 20 0 C.	4	CO1		
Q 2	A first order reaction takes 40 minutes for 30% decomposition. Calculate $t_{1/2}$ for this reaction.	4	CO1		
Q 3	Oxygen at 1 atm Pressure and 0 °C has a density of 1.4290 gm per lit. Find the root mean square velocity of oxygen molecules (P=76 x 13.6 x981 dynes cm ⁻²)	4	CO1		
Q 4	If a solution has a pH of 7.41, determine its H ⁺ concentration.	4	CO1		
Q 5	Calculate the activation energy of a reaction whose reaction rate at 27 °C gets doubled for 10 °C rise in temperature.	4	CO1		
	SECTION B		•		
	(4Qx10M= 40 Marks)				
Q 6	Write short notes on the following:				
	(a) Order of a reaction	10	CO2		
	(b) Molecularity of a reaction	10	02		
	(c) Collision theory of reaction rate				
Q 7	Derive the expression for the rate constant of parallel reaction.	10	CO3		
Q 8	Derive the relation between average velocity, RMS velocity and most probable velocity.	10	CO1		
Q 9	Calculate for oxygen gas at 25 °C and 1 atm pressure (a) mean free path, (b) number of collisions per second per molecule. The collision diameter of the oxygen molecule is 361 picometers. (P= $1.01325 \times 10^5 \text{ Nm}^{-2}$).				
	Or	10	CO3		
	A litre solution containing 0.1 mole of CH ₃ COOH and 0.1 mole of CH ₃ COONa provides a buffer of pH 4.74. Calculate the pH of solution after the addition of 0.02 mole NaOH. $K_a = 1.8 \times 10^{-5}$				

	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) Calculate the root mean square velocity of chlorine molecules at 17 °C and 800 mm pressure. (b) A second order reaction in which the initial concentration of both the reactants are same is 25% complete in 600 seconds. How long will it take for the reaction to go to 75% completion? 	10 + 10	C03
Q 11	(a) Deduce the expression for the rate constant of a second order reaction of the type $2A \rightarrow P$.		
	Or		
	Calculate the pH of 0.1 M NH ₃ solution. The ionized constant K_b for NH ₃ is 1.8 x 10 ⁻⁵ .		
	(b) Calculate from the van der Waals equation the temperature at which 3 moles of SO ₂ would occupy a volume of 0.01 m ³ at 1519875 Nm ⁻² pressure (a= 0.679 Nm ⁴ mol ⁻² , b = $5.64 \times 10^{-5} \text{ m}^3 \text{ mol}^{-1}$, R= $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$).	10 + 10	CO2
	Or		
	Define the following terms;		
	 (i) Axis of symmetry (ii) Inversion centre (iii) Mirror plane (iv) Improper rotation 		