Name:

Enrolment No:

UPES End Semester Examination, December 2024

Course: Mathematical & Statistical Methods Program: MSc Physics Course Code: MATH8023P Semester : 3 Time : 03 hrs Max. Marks : 100

Instructions: Use scientific calculator as allowed.

SECTION A (50x4M=20Marks)				
S. No.		Marks	СО	
Q 1	Discuss the concept of convergence in context of estimating roots using numerical methods. Name two methods for each order of convergence that you could recall.	4	CO3	
Q 2	Describe Regula-Falsi method of finding roots with the help of legible plots and equations.	4	CO2	
Q 3	Explain Parseval's Theorem and its physical significance.	4	CO4	
Q 4	Solve the ordinary differential equation $y' = 1 + 4y^2$, given y (1) =0.	4	CO1	
Q 5	Determine the root of the function $f = 2x \times 2 \cos x$, taking $x_0 = 1$ as starting point.	4	CO2	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	How would you solve a partial differential equation using the finite element method?	10	CO4	
Q 7	Derive the Laplace transform of the Heavyside step function given by u(t-a). Evaluate Inverse Laplace transform of the function - $\frac{3s - 137}{s^2 + 2s + 401}$	10	CO3	
Q 8	Evaluate $J = \int_0^1 e^{-x^2} dx$ by Simpson's rule with $2m = 10$. Make a table with all the intermediate calculated values.	10	CO2	
Q 9	Discuss briefly the concept and applications of Monte Carlo method.	10	CO4	
	SECTION-C (2Qx20M=40 Marks)			
Q 10	Evaluate Laplace transforms of the given functions- a). $e^{-t}(\cos 4t - 2\sin 4t)$ b). $12t \times e^{-t}$	20	CO4	

c). $e^{\frac{t}{2}}u(t-2)$ d). $t \times \cos t + \sin t$		
Q 11Determine the Fourier series of the functiona). $f(x) = x + \pi$ if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$ b). $f(x) = x^2$ if $-1 < x < 1$ given its period $p = 2$ ORa). Find the Fourier transform using the first principles of the function $f(x) = 1$ if $ x < 1$ and $f(x) = 0$ otherwise.b). Discuss 5 properties of Fourier transform.	20	CO3