Name:

Enrolment No:

UPES master Examination December

End Semester Examination, December 2024

Course: Control System Engineering Program: M. Tech (Robotics Engineering) Course Code: ECEG7045 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions. Assume any missing data. Read all the instructions carefully

SECTION A (50w4M-20Mowles)				
S. No.	(5Qx4IvI=20IvIarks)	Marks	СО	
Q 1	Illustrate advantages of modern control system over classical control system?	4	CO1	
Q 2	Explain linear quadratic controller? List its advantage over the PID controller.	4	CO2	
Q 3	List the various representations of the classical control system. List the advantages of each representation.	4	CO2	
Q 4	Name the model based and model free controllers. Identify their output type and feedback nature?	4	CO1	
Q 5	Determine the system poles of the represented in the state space form as $ \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) $	4	CO3	
SECTION B (4Qx10M= 40 Marks)				
Q 6	Explain absolute and relative stability with suitable example? Or Determine the value of K based on Routh stability criterion for which the system is stable whose characteristic equation is given as $s^4 + 2s^3 + 3s^2 + s + K = 0s$	10	CO2	
Q 7	Comment on the system controllability represented in the state space form as $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$	10	CO3	
Q 8	How do the Proportional, Integral, and Derivative components of a PID controller replicate certain behavioral aspects? Do these components inherit any intrinsic model properties, or do they simply reproduce the desired control behavior?	10	CO3	
Q 9	Consider the LQR controller used in the diagram for regulating a home temperature control process. Provide insights on the following:	10	CO1	

a) Identify if the controller system. b) Specify the physical quar c) Evaluate whether the con d) If the plant is substituted drawn? In which situation r e - Controlle	functions as a feedback or feedforward ntity being monitored. itroller is model-based or model-free. with a model, what conclusions can be ns could this be beneficial? y Process		
	SECTION-C (2Ox20M=40 Marks)		
Q 10Obtain the state transition matrix calculate the poles of the system system's stability. $\dot{x}(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	ix for the given system. Additionally, em and provide an assessment of the $ \frac{1}{0} x(t) + \begin{bmatrix} 0 \\ 3 \end{bmatrix} u(t) $	20	CO2
Q 11Obtain the transfer function representation representatio represen	esentation of the system from the given the poles and zeros of the system and $ \frac{1}{3} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) $ $ \frac{x_1(t)}{x_2(t)} + 0u(t) $ Or ol. Calculate the state feedback gain for on the desired poles at s = -2 and s = -3. $ \frac{1}{3} \begin{bmatrix} x(t) + \begin{bmatrix} 2 \\ 2 \end{bmatrix} u(t) $	20	CO3