Name:

Enrolment No:

End Semester Examination, December 2024

Course: Introduction to Robotics Program: M. Tech in Robotics Engineering Course Code: ECEG7043 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions:

- 1. Read the instructions carefully.
- 2. The use of a scientific calculator is permitted.
- 3. You may assume any missing but relevant information and data.
- 4. All questions are compulsory.

SECTION A (50x4M=20Marks)

S No			~~~	
5. NO.		Marks	CO	
Q1	Define the degree of freedom of a robot.	4	CO1	
Q2	Calculate the missing elements of the following frame representation: $F = \begin{bmatrix} 0 & ? & 0 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & -1 & 8 \\ ? & 0 & 0 & 1 \end{bmatrix}$	4	CO2	
Q3	Distinguish between the hand frame and the universal frame	4	CO1	
Q4	Describe redundant and underactuated manipulator.	4	CO1	
Q5	Define the trajectory of a robot.	4	CO1	
SECTION B				
(4Qx10M= 40 Marks)				
Q6	Derive the matrix that represents a pure rotation about the <i>z</i> -axis of the reference frame.	10	CO3	
Q7	Calculate the coordinates of point $P(2,3,4)^T$ relative to the reference frame after a rotation of 47° about the <i>x</i> -axis followed by 72° rotation about y-axis of the frame.	10	CO4	
Q8	Explain the following statement: Lagrangian of a mechanical system is a function of the generalised coordinates defined as the difference between the kinetic energy and the potential energy of the system. OR	10	CO5	

	Define the differential operator (Δ). Derive the differential operator for differential transformation of a 3D frame.				
Q9	 Analyze the kinematic diagram of a robot as shown in the figure and answer the following questions: a) Identify the configuration of the robot and the shape of its work volume. b) Create a Denavit-Hartenberg table for this robot. 				
		10			
SECTION-C (2Qx20M=40 Marks)					
Q10	The hand frame T_H of a robot is given. The corresponding inverse Jacobian of the robot at this location relative to this frame is also shown. The robot makes a differential motion relative to this frame described as $T_H D = [0.05 \ 0 \ -0.1 \ 0 \ 0.1 \ 0.1]^T$ a. Find which joints must make a differential motion, and by how much, in order to create the indicated differential motions. b. Calculate the change in the frame. c. Find the new location of the frame after the differential motion. d. Find how much the differential motions (given above) should have been if measured relative to the Universe, to move the robot to the same new location as in Part c.	20	CO5		
	$T_{H} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 0 & 3 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ I^{T_{H}} J J^{-I} = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 0 & 0 & 0 \\ 0 & -0.2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$				

